Publications

Results 1–25 of 58
Skip to search filters

Local limits of detection for anthropogenic aerosol-cloud interactions

Shand, Lyndsay S.; Larson, Kelsie M.; Staid, Andrea S.; Roesler, Erika L.; Lyons, Donald A.; Simonson, Katherine M.; Patel, Lekha P.; Hickey, James J.; Gray, Skyler D.

Ship tracks are quasi-linear cloud patterns produced from the interaction of ship emissions with low boundary layer clouds. They are visible throughout the diurnal cycle in satellite images from space-borne assets like the Advanced Baseline Imagers (ABI) aboard the National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellites (GOES-R). However, complex atmospheric dynamics often make it difficult to identify and characterize the formation and evolution of tracks. Ship tracks have the potential to increase a cloud's albedo and reduce the impact of global warming. Thus, it is important to study these patterns to better understand the complex atmospheric interactions between aerosols and clouds to improve our climate models, and examine the efficacy of climate interventions, such as marine cloud brightening. Over the course of this 3-year project, we have developed novel data-driven techniques that advance our ability to assess the effects of ship emissions on marine environments and the risks of future marine cloud brightening efforts. The three main innovative technical contributions we will document here are a method to track aerosol injections using optical flow, a stochastic simulation model for track formations and an automated detection algorithm for efficient identification of ship tracks in large datasets.

More Details

Critical Infrastructure Decision-Making under Long-Term Climate Hazard Uncertainty: The Need for an Integrated, Multidisciplinary Approach

Staid, Andrea S.; Fleming Lindsley, Elizabeth S.; Gunda, Thushara G.; Jackson, Nicole D.

U.S. critical infrastructure assets are often designed to operate for decades, and yet long-term planning practices have historically ignored climate change. With the current pace of changing operational conditions and severe weather hazards, research is needed to improve our ability to translate complex, uncertain risk assessment data into actionable inputs to improve decision-making for infrastructure planning. Decisions made today need to explicitly account for climate change – the chronic stressors, the evolution of severe weather events, and the wide-ranging uncertainties. If done well, decision making with climate in mind will result in increased resilience and decreased impacts to our lives, economies, and national security. We present a three-tier approach to create the research products needed in this space: bringing together climate projection data, severe weather event modeling, asset-level impacts, and contextspecific decision constraints and requirements. At each step, it is crucial to capture uncertainties and to communicate those uncertainties to decision-makers. While many components of the necessary research are mature (i.e., climate projection data), there has been little effort to develop proven tools for long-term planning in this space. The combination of chronic and acute stressors, spatial and temporal uncertainties, and interdependencies among infrastructure sectors coalesce into a complex decision space. By applying known methods from decision science and data analysis, we can work to demonstrate the value of an interdisciplinary approach to climate-hazard decision making for longterm infrastructure planning.

More Details

Large-scale Nonlinear Approaches for Inference of Reporting Dynamics and Unobserved SARS-CoV-2 Infections

Hart, William E.; Bynum, Michael L.; Laird, Carl L.; Siirola, John D.; Staid, Andrea S.

This work focuses on estimation of unknown states and parameters in a discrete-time, stochastic, SEIR model using reported case counts and mortality data. An SEIR model is based on classifying individuals with respect to their status in regards to the progression of the disease, where S is the number individuals who remain susceptible to the disease, E is the number of individuals who have been exposed to the disease but not yet infectious, I is the number of individuals who are currently infectious, and R is the number of recovered individuals. For convenience, we include in our notation the number of infections or transmissions, T, that represents the number of individuals transitioning from compartment S to compartment E over a particular interval. Similarly, we use C to represent the number of reported cases.

More Details

Spatio-temporal Estimates of Disease Transmission Parameters for COVID-19 with a Fully-Coupled, County-Level Model of the United States

Cummings, Derek A.; Hart, William E.; García-Carreras, Bernardo G.; Lanning, Carl D.; Lessler, Justin L.; Staid, Andrea S.

Sandia National Laboratories has developed a capability to estimate parameters of epidemiological models from case reporting data to support responses to the COVID-19 pandemic. A differentiating feature of this work is the ability to simultaneously estimate county-specific disease transmission parameters in a nation-wide model that considers mobility between counties. The approach is focused on estimating parameters in a stochastic SEIR model that considers mobility between model patches (i.e., counties) as well as additional infectious compartments. The inference engine developed by Sandia includes (1) reconstruction and (2) transmission parameter inference. Reconstruction involves estimating current population counts within each of the compartments in a modified SEIR model from reported case data. Reconstruction produces input for the inference formulations, and it provides initial conditions that can be used in other modeling and planning efforts. Inference involves the solution of a large-scale optimization problem to estimate the time profiles for the transmission parameters in each county. These provide quantification of changes in the transmission parameter over time (e.g., due to impact of intervention strategies). This capability has been implemented in a Python-based software package, epi_inference, that makes extensive use of Pyomo [5] and IPOPT [10] to formulate and solve the inference formulations.

More Details

Dakota-NAERM Integration

Swiler, Laura P.; Newman, Sarah N.; Staid, Andrea S.; Barrett, Emily B.

This report presents the results of a collaborative effort under the Verification, Validation, and Uncertainty Quantification (VVUQ) thrust area of the North American Energy Resilience Model (NAERM) program. The goal of the effort described in this report was to integrate the Dakota software with the NAERM software framework to demonstrate sensitivity analysis of a co-simulation for NAERM.

More Details

Hurricane-induced power outage risk under climate change is primarily driven by the uncertainty in projections of future hurricane frequency

Scientific Reports

Alemazkoor, Negin; Rachunok, Benjamin; Chavas, Daniel R.; Staid, Andrea S.; Louhghalam, Arghavan; Nateghi, Roshanak; Tootkaboni, Mazdak

Nine in ten major outages in the US have been caused by hurricanes. Long-term outage risk is a function of climate change-triggered shifts in hurricane frequency and intensity; yet projections of both remain highly uncertain. However, outage risk models do not account for the epistemic uncertainties in physics-based hurricane projections under climate change, largely due to the extreme computational complexity. Instead they use simple probabilistic assumptions to model such uncertainties. Here, we propose a transparent and efficient framework to, for the first time, bridge the physics-based hurricane projections and intricate outage risk models. We find that uncertainty in projections of the frequency of weaker storms explains over 95% of the uncertainty in outage projections; thus, reducing this uncertainty will greatly improve outage risk management. We also show that the expected annual fraction of affected customers exhibits large variances, warranting the adoption of robust resilience investment strategies and climate-informed regulatory frameworks.

More Details

Sensitivity and Uncertainty Analysis of Generator Failures under Extreme Temperature Scenarios in Power Systems

Emery, Benjamin F.; Staid, Andrea S.; Swiler, Laura P.

This report summarizes work done under the Verification, Validation, and Uncertainty Quantification (VVUQ) thrust area of the North American Energy Resilience Model (NAERM) Program. The specific task of interest described in this report is focused on sensitivity analysis of scenarios involving failures of both wind turbines and thermal generators under extreme cold-weather temperature conditions as would be observed in a Polar Vortex event.

More Details

Models and analysis of fuel switching generation impacts on power system resilience

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Knueven, Ben; Staid, Andrea S.; Watson, Jean-Paul W.

This paper presents model formulations for generators that have the ability to use multiple fuels and to switch between them if necessary. These models are used to generate different scenarios of fuel switching penetration from a test power system. With these scenarios, for a severe disruption in the fuel supply to multiple generators, the paper analyzes the effect that fuel switching has on the resilience of the power system. Load not served is used as the proxy metric to evaluate power system resilience. The paper shows that the presence of generators with fuel switching capabilities considerably reduces the amount and duration of the load shed by the system facing the fuel disruption.

More Details

Hybridizing Classifiers and Collection Systems to Maximize Intelligence and Minimize Uncertainty in National Security Data Analytics Applications

Staid, Andrea S.; Valicka, Christopher G.

There are numerous applications that combine data collected from sensors with machine-learning based classification models to predict the type of event or objects observed. Both the collection of the data itself and the classification models can be tuned for optimal performance, but we hypothesize that additional gains can be realized by jointly assessing both factors together. Through this research, we used a seismic event dataset and two neural network classification models that issued probabilistic predictions on each event to determine whether it was an earthquake or a quarry blast. Real world applications will have constraints on data collection, perhaps in terms of a budget for the number of sensors or on where, when, or how data can be collected. We mimicked such constraints by creating subnetworks of sensors with both size and locational constraints. We compare different methods of determining the set of sensors in each subnetwork in terms of their predictive accuracy and the number of events that they observe overall. Additionally, we take the classifiers into account, treating them both as black-box models and testing out various ways of combining predictions among models and among the set of sensors that observe any given event. We find that comparable overall performance can be seen with less than half the number of sensors in the full network. Additionally, a voting scheme that uses the average confidence across the sensors for a given event shows improved predictive accuracy across nearly all subnetworks. Lastly, locational constraints matter, but sometimes in unintuitive ways, as better-performing sensors may be chosen instead of the ones excluded based on location. This being a short-term research effort, we offer a lengthy discussion on interesting next-steps and ties to other ongoing research efforts that we did not have time to pursue. These include a detailed analysis of the subnetwork performance broken down by event type, specific location, and model confidence. This project also included a Campus Executive research partnership with Texas A&M University. Through this, we worked with a professor and student to study information gain for UAV routing. This was an alternative way of looking at the similar problem space that includes sensor operation for data collection and the resulting benefit to be gained from it. This work is described in an Appendix.

More Details
Results 1–25 of 58
Results 1–25 of 58