Publications / Other Report

Zero-Truncated Poisson Tensor Decomposition for Sparse Count Data

Lopez, Oscar L.; Lehoucq, Richard B.; Dunlavy, Daniel D.

We propose a novel statistical inference paradigm for zero-inflated multiway count data that dispenses with the need to distinguish between true and false zero counts. Our approach ignores all zero entries and applies zero-truncated Poisson regression on the positive counts. Inference is accomplished via tensor completion that imposes low-rank structure on the Poisson parameter space. Our main result shows that an $\textit{N}$-way rank-R parametric tensor 𝓜 ϵ (0, ∞)$I$Χ∙∙∙Χ$I$ generating Poisson observations can be accurately estimated from approximately $IR^2 \text{log}^2_2(I)$ non-zero counts for a nonnegative canonical polyadic decomposition. Several numerical experiments are presented demonstrating that our zero-truncated paradigm is comparable to the ideal scenario where the locations of false zero counts are known $\textit{a priori}$.