Publications

Publications / Conference Proceeding

Using Monitoring Data to Improve HPC Performance via Network-Data-Driven Allocation

Zhang, Yijia; Aksar, Burak; Aaziz, Omar R.; Schwaller, Benjamin S.; Brandt, James M.; Leung, Vitus J.; Egele, Manuel; Coskun, Ayse K.

On high-performance computing (HPC) systems, job allocation strategies control the placement of a job among available nodes. As the placement changes a job's communication performance, allocation can significantly affects execution times of many HPC applications. Existing allocation strategies typically make decisions based on resource limit, network topology, communication patterns, etc. However, system network performance at runtime is seldom consulted in allocation, even though it significantly affects job execution times.In this work, we demonstrate using monitoring data to improve HPC systems' performance by proposing a NetworkData-Driven (NeDD) job allocation framework, which monitors the network performance of an HPC system at runtime and allocates resources based on both network performance and job characteristics. NeDD characterizes system network performance by collecting the network traffic statistics on each router link, and it characterizes a job's sensitivity to network congestion by collecting Message Passing Interface (MPI) statistics. During allocation, NeDD pairs network-sensitive (network-insensitive) jobs with nodes whose parent routers have low (high) network traffic. Through experiments on a large HPC system, we demonstrate that NeDD reduces the execution time of parallel applications by 11% on average and up to 34%.