Publications / Journal Article

Ultradoping Boron on Si(100) via Solvothermal Chemistry**

Frederick, Esther F.; Campbell, Quinn C.; Kolesnichenko, Igor K.; Pena, Luis F.; Benavidez, Angelica; Anderson, Evan M.; Wheeler, David R.; Misra, Shashank M.

Ultradoping introduces unprecedented dopant levels into Si, which transforms its electronic behavior and enables its use as a next-generation electronic material. Commercialization of ultradoping is currently limited by gas-phase ultra-high vacuum requirements. Solvothermal chemistry is amenable to scale-up. However, an integral part of ultradoping is a direct chemical bond between dopants and Si, and solvothermal dopant-Si surface reactions are not well-developed. This work provides the first quantified demonstration of achieving ultradoping concentrations of boron (∼1e14 cm2) by using a solvothermal process. Surface characterizations indicate the catalyst cross-reacted, which led to multiple surface products and caused ambiguity in experimental confirmation of direct surface attachment. Density functional theory computations elucidate that the reaction results in direct B−Si surface bonds. This proof-of-principle work lays groundwork for emerging solvothermal ultradoping processes.