Publications / SAND Report

Scalable fault tolerant algorithms for linear-scaling coupled-cluster electronic structure methods

Janssen, Curtis L.; Leininger, Matthew L.

By means of coupled-cluster theory, molecular properties can be computed with an accuracy often exceeding that of experiment. The high-degree polynomial scaling of the coupled-cluster method, however, remains a major obstacle in the accurate theoretical treatment of mainstream chemical problems, despite tremendous progress in computer architectures. Although it has long been recognized that this super-linear scaling is non-physical, the development of efficient reduced-scaling algorithms for massively parallel computers has not been realized. We here present a locally correlated, reduced-scaling, massively parallel coupled-cluster algorithm. A sparse data representation for handling distributed, sparse multidimensional arrays has been implemented along with a set of generalized contraction routines capable of handling such arrays. The parallel implementation entails a coarse-grained parallelization, reducing interprocessor communication and distributing the largest data arrays but replicating as many arrays as possible without introducing memory bottlenecks. The performance of the algorithm is illustrated by several series of runs for glycine chains using a Linux cluster with an InfiniBand interconnect.