Publications

Publications / Conference Poster

Multifidelity uncertainty propagation for cardiovascular hemodynamics

Schiavazzi, Daniele E.; Fleeter, Casey M.; Geraci, Gianluca G.; Marsden, Alison L.

Predictions from numerical hemodynamics are increasingly adopted and trusted in the diagnosis and treatment of cardiovascular disease. However, the predictive abilities of deterministic numerical models are limited due to the large number of possible sources of uncertainty including boundary conditions, vessel wall material properties, and patient specific model anatomy. Stochastic approaches have been proposed as a possible improvement, but are penalized by the large computational cost associated with repeated solutions of the underlying deterministic model. We propose a stochastic framework which leverages three cardiovascular model fidelities, i.e., three-, one- and zero-dimensional representations of cardiovascular blood flow. Specifically, we employ multilevel and multifidelity estimators from Sandia's open-source Dakota toolkit to reduce the variance in our estimated quantities of interest, while maintaining a reasonable computational cost. The performance of these estimators in terms of computational cost reductions is investigated for both global and local hemodynamic indicators.