3.2.4.4. Conservation of Fluid Momentum

The Cauchy momentum equation is given by

(3.21)\density\pt{\v} + \density\v\bcdot\grad\v - \g -\div\T = \vector{0}

where \T is the fluid stress tensor and \g is a body force. We construct the G/FEM residual form of (3.21) by contracting with the unit coordinate vector in the k-direction, \e_k, multiplying by the weight function \phi^i and integrating over the volume. Using the vector identity (\div\T)\bcdot\e_k\phi^i = \div(\T\bcdot\e_k\phi^i) - \T^t:\grad(\e_k\phi^i) and integrating by parts gives

(3.22)\symRes_{m,k}^i = \int\limits_\Vol \left[ \left(\density\pt{\v} +
  \density\v\bcdot\grad\v - \g\right)\bcdot\e_k\phi^i +
  \T^t:\grad\left(\e_k\phi^i\right)\right]\dV - \int\limits_\Surf
\n\bcdot\T\bcdot\e_k\phi^i\dS = 0

In Aria, each term in (3.22) is specified separately as identified in equation (3.23).

(3.23)\symRes_{m,k}^i
& = \underbrace{\int\limits_\Vol \density\pt{\v}\bcdot\e_k\phi^i\dV}_\mathrm{MASS}
  + \underbrace{\int\limits_\Vol \density\v\bcdot\grad\v\bcdot\e_k\phi^i\dV}_\mathrm{ADV}
  - \underbrace{\int\limits_\Vol \g\bcdot\e_k\phi^i\dV}_\mathrm{SRC} \\
& + \underbrace{\int\limits_\Vol \T^t:\grad\left(\e_k\phi^i\right)\dV}_\mathrm{DIFF}
  - \int\limits_\Surf \n\bcdot\T\bcdot\e_k\phi^i\dS
  = 0