9. Symbols

Table 9.1 List Of Symbols

Symbol

Description

First Appearance

\extSpeed

Extension speed

Level Set

\heaviSmooth

Smooth Heaviside

Level Set

\symRes

Solution Residual

Governing Equations

\symDomain

Volumetric Domain

Domain Definition

\levelSet

Level set variable

Level Set

\symCoordVect

Spatial Coordinate Vector

Domain Definition

\dHeaviSmooth

Smooth Heaviside

Level Set

\levelSetCurv

Level set curvature

Level Set

\Surf

Generic Surface

Domain Definition

\Vol

Generic Volume

Domain Definition

\symDomainBoundary

Boundary of domain \symDomain

Domain Definition

\symDomainInterface

Interface of domains \symDomain_i and \symDomain_j

Domain Definition

\symSlnVar

Solution Variables

Governing Equations

\symWeightFunc

Finite Element Weight Function

Governing Equations

\surfaceTensionCoeff

Surface tension coefficient

Level Set/CDFEM

\symJac

Jacobian Matrix

Solution Strategy

\heaviWidth

Smooth Heaviside interface thickness

Level Set

\surfaceTensionBodyForce

Surface tension force vector

Level Set/CDFEM

\identityTensor

Identity tensor

Level Set/CDFEM

\surfaceTensionTensorStab

Surface tension stress tensor stabilization

Level Set/CDFEM

\surfaceTensionTensor

Surface tension stress tensor

Level Set/CDFEM

\symSlnIncr

Solution Increment

Solution Strategy

\symResVec

Residual Vector

Solution Strategy

\symSlnVec

Solution Vector

Solution Strategy

\surfaceTensionSurfaceForce

Surface tension force vector

Level Set/CDFEM

\levelSetNormal

Level set normal

Level Set

Table 9.2 General Notation

Expression

Meaning

\interior{\mathcal{R}}

interior of \mathcal{R}

\boundary{\mathcal{R}}

boundary of \mathcal{R}

\mathcal{R} \cup \mathcal{F}

union of \mathcal{R} and \mathcal{F}

\mathcal{R} \cap \mathcal{F}

intersection of \mathcal{R} and \mathcal{F}

\mathcal{R} \subset \mathcal{F}

\mathcal{R} is a subset of \mathcal{F}

\mathcal{R}\setminus \mathcal{F}

set complement

x \in \mathcal{R}

x is an element of the set \mathcal{R}

f : \mathcal{R} \rightarrow \mathcal{F}

f maps the set \mathcal{R} into the set \mathcal{F};

\mathcal{R} is the domain, \mathcal{F} the codomain

x \mapsto f(x)

mapping that carries x into f(x);

e.g. x \mapsto x^2 is the mapping that carries every

real number x into its square

f \circ g

composition of the mappings f and g;

i.e. (f \circ g)(x) = f(g(x))

\{x\,|\,R(x) \; \text{holds}\}

the set of all x such that R(x) holds;

e.g. \{x\,|\,0 \leq x \leq 1\} is the interval [0,1]

\delta(\bfx - \bfx_0)

Dirac delta function centered at \bfx_0

\ljump \cdot \rjump

measure of jump in a quantity across an interface

\mathbb{R}

real numbers

\mathbb{N}

natural numbers