3.2.4.2. Conservation of Energy

For a material with constant density and specific heat \specificheat, temperature T, heat flux \vector{q} and volumetric energy source H_V, letting b = \density\specificheat T, \vector{f} = \vector{q} and B_\Vol = H_V results in the conservation of energy.

(3.11)\density\specificheat\pt{T} + \density\specificheat\v\bcdot\grad T
= -\div\vector{q} + H_V.

A common constitutive relationship for \vector{q} is Fourier’s law, \vector{q} = - \thermcond\grad T where \thermcond is the thermal conductivity. However, we leave the heat flux as an option to be specified as part of the material properties (see Heat Conduction). Using equation (3.3), the G/FEM residual form is

(3.12)\symRes_T^i = \int\limits_\Vol\left[\left(\density\specificheat\pt{T} +
  \density\specificheat\v\bcdot\grad T - H_V\right)\phi^i -
  \grad\phi^i\bcdot\vector{q}\right]\dV +
\int\limits_\Surf q_n\phi^i\dS = 0

where q_n is the heat flux at the boundary. For example, the natural convection boundary condition gives q_n = h(T-T_\infty) where h is the heat transfer coefficient and T_\infty is the bulk temperature away from the surface.

In Aria, each term in (3.12) is specified separately as identified in equation (3.13).

(3.13)\symRes_T^i
& = \underbrace{\int\limits_\Vol \density\specificheat\pt{T}\phi^i\dV}_\mathrm{MASS}
  + \underbrace{\int\limits_\Vol \density\specificheat\v\bcdot\grad T\phi^i\dV}_\mathrm{ADV}
  + \underbrace{\int\limits_\Vol \density\specificheat T \div \v \phi^i\dV}_\mathrm{DIV}  \\
& - \underbrace{\int\limits_\Vol H_V \phi^i\dV}_{\mathrm{SRC}}
  - \underbrace{\int\limits_\Vol \grad\phi^i\bcdot\vector{q}\dV}_\mathrm{DIFF}
  + \int\limits_\Surf q_n\phi^i\dS
  = 0

For a purely incompressible form, we know that \div\v\equiv 0 and can remove terms. Equation (3.13) then simplifies to

(3.14)\symRes_T^i
& = \underbrace{\int\limits_\Vol \density\specificheat\pt{T}\phi^i\dV}_\mathrm{MASS}
  + \underbrace{\int\limits_\Vol \density\specificheat\v\bcdot\grad T\phi^i\dV}_\mathrm{ADV}
  - \underbrace{\int\limits_\Vol H_V \phi^i\dV}_{\mathrm{SRC}} \\
& - \underbrace{\int\limits_\Vol \grad\phi^i\bcdot\vector{q}\dV}_\mathrm{DIFF}
  + \int\limits_\Surf q_n\phi^i\dS
  = 0

Note, however, that both equations still assume a constant specific heat \specificheat.

3.2.4.2.1. SUPG

SUPG stabilization can be activated by added the SUPG term on the input file line. This capability is still under development.