7.6.20.12.2. Arrhenius_Carreau

Syntax

Viscosity [{of} SpeciesName] = Arrhenius_Carreau [Mu_Zero = mu_zero | Mu_Inf = mu_inf | N = n | A = a | Lambda = lambda | K = k | T_Ref = t_ref | Skip_Sensitivities = skip_sensitivities | Sensitivity_Scaling = sensitivity_scaling | Ramp_Sensitivities_Over_Time = ramp_sensitivities_over_time]

Scope

Aria Material

Summary

This viscosity model is a function of the shear rate (Carreau model) and temperature (Arrhenius model). The two contributions are combined multiplicatively.

\mu\left(\dot{\gamma},T\right) = \left[\mu_{\infty} + \left(\mu_{\circ} - \mu_{\infty}\right) \left(1 + \left(\lambda\dot{\gamma}\right)^a\right)^{\frac{n-1}{a}} \right] e^{\frac{K}{T}-\frac{K}{T_{ref}}},

where \mu_\infty is the infinite shear viscosity (defaults to zero), \mu_\circ is the zero shear viscosity, n and a (defaults to 2) are model parameters, \dot{\gamma} is the shear rate, \lambda is a time constant (defaults to 1), T_{ref} is a reference temperature and K is an Arrhenius constant.

Parameter

Value

Default

{of}

{of | species | subindex}

SpeciesName

string

mu_zero

real

mu_inf

real

0

n

real

a

real

2

lambda

real

1

k

real

t_ref

real

skip_sensitivities

integer

sensitivity_scaling

real

1

ramp_sensitivities_over_time

real

-1