7. Bibliography

1

Tieszen, S. R., A. R. Lopez, C. D. Moen, T. Y. Chu, V. F. Nicolette, W. Gill, S. P. Burns, and W. C. Moffatt. “SIERRA/Fuego and SIERRA/Syrinx Verification and Validation Plan, Version 2.0". internal report, Sandia National Laboratories, 2001.

2

Rehm, R. G. and H. R. Baum. “The Equations of Motion for Thermally Driven Buoyant Flows". Journal of Research of the National Bureau of Standards, \bf 83:279, 1978.

3

Paolucci, S. “On the Filtering of Sound Waves from the Navier-Stokes Equations". Technical Report SAND Report 82–8257, Sandia National Laboratories, Livermore, CA, December 1982.

4

Majda, A. and J. Sethian. “The Derivation and Numerical Solution of the Equations for Zero Mach Number Combustion". Combustion Science and Technology, \bf 42:185–205, 1985.

5

Merkle, C. L. and Y. H. Choi. “Computation of Compressible Flows at Very Low Mach Numbers". AIAA Paper 86–0351, AIAA 24th Aerospace Sciences Meeting, Reno, NV, January 1986.

6

Bird, R. B., W. E. Stewart and E. N. Lightfoot. Transport Phenomena. John Wiley and Sons, 1960.

7

Burns, S. P. “Turbulence Radiation Interaction Modeling in Combustion Simulations". Technical Report, Sandia National Laboratories, Albuquerque, NM, 1999.

8

Modest, M. F. Radiation Heat Transfer. McGraw Hill Book Company, New York, 1993.

9

Siegel R. and J. R. Howell. Thermal Radiation Heat Transfer, 3rd ed. Hemisphere Publishing, Washington, D.C., 1992.

10

Tennekes, H. and J. L. Lumley. A First Course in Turbulence. MIT Press, Cambridge, 1972.

11

Libby, P. A. and F. A. Williams. Turbulent Reacting Flows, Fundamental Aspects, Topics in Applied Physics, V. 44. Springer-Verlag., 1980.

12

Kuo, K. K. Principles of Combustion. John Wiley and Sons, 1986.

13

Wilcox, D. C. Turbulence Modeling for CFD. DCW Industries, 2nd edition, 1998.

14

Moin, P., K. Squires, W. Cabot, and S. Lee. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A, 3(11):2746–2757, 1991.

15

Erlebacher, G., M. Y. Hussaini, C. G. Speziale, and T. A. Zang. Toward the large-eddy simulation of compressible turbulent flows. J. Fluid Mech., 238:155–185, 1992.

16

Gran, I. M. C. Melaaen, and B. F. Magnussen. “Numerical Simulation of Local Extinction Effects in Turbulent Combustor Flows of Methane and Air". In 25th Symposium on Combustion, 1283–1291. The Combustion Institute, 1994.

17

Tieszen, S. R., S. P. Domino, A. R. Black. Validation of a simple turbulence model suitable for closure of temporally-filtered Navier-Stokes equations using a helium plume. Technical Report SAND Report 2005–3210, Sandia National Laboratories, Albuquerque, NM, June 2005.

18

Launder, G. E. and B. I. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spining disc. Letters in Heat and Mass Transfer, \bf 1(2):131–138, 1974.

19

A. Mathur and S. He. "Performance and implementation of the Launder–Sharma low-Reynolds number turbulence model". Computers and Fluids, \bf 79:134–139, 2013.

20

Papageorgakis, G. C. and D. N. Assanis. Comparison of linear and nonlinear RNG-based k-epsilon models for incompressible turbulent flows. Numerical Heat Transfer, Part B, 35(1):1–22, 1999.

21

Durbin, P. A. “Near-Wall Turbulence Closure Modeling Without Damping Functions". Theoretical and Computational Fluid Dynamics, \bf 3:1–13, 1991.

22

Wilcox, D. C. Formulation of the k-omega turbulence model revisisted. 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.

23

Menter, F. R., Kuntz, M. and R. Langtry. “Ten years of industrial experience with the SST turbulence model". Turb, Heat and Mass Trans, 2003.

24

Smagorinsky, J. General circulation experiments with the primitive equations. i. the basic experiment. Monthly Weather Review, 91:99–164, 1963.

25

Rogallo, R. S. and P. Moin. Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16:99–137, 1984.

26

Germano, M., U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A, 3(7):1760–1765, July 1991.

27

Germano, M. Turbulence: the filtering approach. Journal of Fluid Mechanics, 238:325–336, 1992.

28

Ghosal, S., T. S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for large-eddy simulation of turbulent flow. Journal of Fluid Mechanics, 286:229–255, 1995.

29

Lilly, D. K. A proposed modification of the germano subgrid-scale closure model. Physics of Fluids A, 4(3):633–635, March 1992.

30

Masahide Inagaki. A new wall-damping function for large eddy simulation employing kolmogorov velocity scale. International Journal of Heat and Fluid Flow, 32(1):26–40, 2011. URL: https://www.sciencedirect.com/science/article/pii/S0142727X10001268, doi:https://doi.org/10.1016/j.ijheatfluidflow.2010.07.001.

31

Kim, W. W. and S. Menon. “Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows". 35th AIAA Aerospace Sciences Meeting and Exhibit, 1997.

32

Nicolette, V. F. and S. R. Tieszen. “ Effect of Turbulent Kinetic Energy Source Terms on Pool Fire Simulations with the $k-\epsilon $ Model". Technical Report, Internal Memorandum to Distribution, Official Use Only, Sandia National Laboratories, 2000.

33

Rodi W. Turbulence Models and their Applications in Hydrolics - A State of the Art Review. Publication of teh International Association for Hydrolic Research, Delf, Netherlands, 1984.

34

de Ris, J. L. Mechanism of buoyant turbulent diffusion flames. Procedia Engineering, 62:13–27, 2013.

35

Jones, W. P. and B. E. Launder. “The Prediction of Laminarization with a Two-Equation Model of Turbulence". International Journal of Heat and Mass Transfer, \bf 15:301–314, 1972.

36

White, F. M. Viscous Fluid Flow. McGraw-Hill, Inc., 2nd ed., 1991.

37

Sondak, D. L. and R. H. Pletcher. “ Application of wall functions to generalized nonorthogonal curvilinear coordinate systems ". AIAA Journal, \bf 33(1):33–41, January 1995.

38

Elkaim, D., M. Reggio, and R. Camarero. “Control Volume Finite-Element Solution of a Confined Turbulent Diffusion Flame". Numerical Heat Transfer, Part A, \bf 23(3):259–279, 1993.

39

Launder, B. E. and D. B. Spalding. “The Numerical Computation of Turbulent Flows". Computer Methods in Applied Mechanics and Engineering, \bf 3:269–289, 1974.

40

Versteeg, H. K. and W. Malalasekera. An Introduction to Computational Fluid Dynamincs. Longman Group LTD, 1995.

41

Jayatilleke, C. L. V. “The Influence of Prandtl Number and Surface Roughness on the Resistance of Laminar Sub-Layer to Momentum and Heat Transfer". Progress in Heat and Mass Transfer, 1969.

42

V.I. Kornilov. Current state and prospects of researches on the control of turbulent boundary layer by air blowing. Progress in Aerospace Sciences, 76:1–23, 2015. URL: https://www.sciencedirect.com/science/article/pii/S0376042115000329, doi:https://doi.org/10.1016/j.paerosci.2015.05.001.

43

Magnussen, B. F., G. H. Hjertager, J. G. Olsen, and D. Bhaduri. “Effect of Turbulent Structure and Local Concentrations on Soot Formation and Combustion in C2H2 Diffusion Flames". In Seventeenth Symposium (International) on Combustion, 1383–1393. The Combustion Institute, Pittsburgh, 1979.

44

Magnussen, B. F. “On the Structure of Turbulence and a Generalised Eddy Dissipation Concept for Chemical Reactions in Turbulent Flow". 9th AIAA Sc. Meeting, St. Louis, 1981.

45

Byggstyøl, S. and B. F. Magnussen. “A Model for Extinction in Turbulent Flows". In et al. Bradbury, editor, $4^th$ Symposium on Turbulent Shear Flow, 381–395. Springer-Verlag, Berlin, 1983.

46

Magnussen, B. F. “Heat Transfer in Gas Turbine Combustors – A Discussion of Combustion, Heat and Mass Transfer in Gas Turbine Combustors". In Conference Proceedings no. 390, Advisory Group for Aerospace Research and Development (AGARD). 1985.

47

Lilleheie, N. I., I. Ertesvåg, T. Bjorge, S. Byggstyøl, and B. F. Magnussen. “Modeling and Chemical Reactions, Review of Turbulence and Combustion Models". Technical Report, The Foundation for Scientific and Industrial Research, Norwegian Institute of Technology, SINTEF Report STF15 A89024, July 1989.

48

Gran, I. and B. F. Magnussen. “A Numerical Study of a Bluff-body Stabilized Diffusion Flame. Part 2: Influence of Combustion Modeling and Finite Rate Chemistry". Combustion Science and Technology, \bf 119:191–217, 1996.

49

Tieszen, S. R., V. F. Nicolette, L. A. Gritzo, J. K. Holen, D. Murray, and J. L. Moya. “Vortical Structures In Pool Fires: Observation, Speculation, and Simulation". Technical Report, SAND96-2607, Sandia National Laboratories, Albuquerque, NM, November 1996.

50

Strehlow, R. A. Combustion Fundamentals. McGraw-Hill, New York, 1984.

51

Ertesvåg, I. S. and B. F. Magnussen. “The Eddy-dissipation turbulence energy cascade model". Technical Report, Department of Applied Mechanics, Thermodynamics and Fluid Dynamics, The Norwegian University of Science and Technology, Trondheim, Norway (In Preparation), 1997.

52

Holen, J., B. Lakså, B. F. Magnussen, and B. E. Vembe. “KAMELEON-II-Fire Theory Manual, A Description of the Mathematical Models, Numerical Methods, and Solution Procedures". Technical Report, The Foundation for Scientific and Industrial Research, Norwegian Institute of Technology, Trondheim, Norway, SINTEF Report STF15 F94070, November 1994.

53

N. Peters. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10:319–339, 1984.

54

IM Aksit and JB Moss. A hybrid scalar model for sooting turbulent flames. Combustion and flame, 145(1-2):231–244, 2006.

55

Danny Messig, Franziska Hunger, Jens Keller, and Christian Hasse. Evaluation of radiation modeling approaches for non-premixed flamelets considering a laminar methane air flame. Combustion and Flame, 160(2):251–264, 2013.

56

T. Poinsot and D. Veynante. Theoretical and Numerical Combustion. R. T. Edwards, Inc., Philadelphia, PA, 2005.

57

C. D. Pierce and P. Moin. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Physics of Fluids, 3041–3044.

58

R. W. Bilger. The structure of turbulent nonpremixed flames. In Proceedings of the 22nd Symposium (International) on Combustion, pages 475–488. The Combustion Institute, Pittsburg, PA, 1988.

59

G. Erlebacher, M. Y. Hussaini, C. G. Speziale, and T. A. Zang. Toward the large eddy simulation of compressible turbulent flows. ICASE Report 87-20, NASA Langley Research Center, Hampton, VA, 1987. Also available as \em NASA CR 178273.

60

S. Ghosal, T.S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for large-eddy simulation of turbulent flow. Journal of Fluid Mechanics, 286:229–255, 1995.

61

Parente, A. and Malik, M. R. and Contino, F. and Cuoci,A. and Dally, B. B. “Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion". Fuel, \bf 163:98–111, 2016.

62

Magnussen, B. F. and G. H. Hjertager. “On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion". In Sixteenth Symposium (International) on Combustion, 719–729. The Combustion Institute, Pittsburgh, 1977.

63

Tesner, P. A., T. D. Snegiriova, and V. G. Knorre. “Kinetics of dispersed carbon formation". Combustion and Flame, \bf 17:253–260, 1971.

64

Haynes, B. S. and H. G. Wagner. “Soot Formation". Progress in Energy and Combustion Science, \bf 7:229–273, 1981.

65

Tesner, P. A., E. I. Tsygankova, L. P. Guilazetdinov, V. P. Zuyev, and G. V. Loshakova. “The formation of soot from aromatic hydrocarbons in diffusion flames of hydrocarbon-hydrogen mixtures". Combustion and Flame, \bf 17:279–285, 1971.

66

Tezduyar, T. E. “Stabilized Finite Element Formulations for Incompressible Flow Computations". In editor, Advances in Applied Mechanics, volume \bf 28, pages 1–44. Academic Press, Inc., 1992.

67

Felske, J. D. and C. L. Tien. “Calculation of the Emissivity of Luminous Flames". Combustion Science and Technology, \bf 7:23–31, 1973.

68

Felske, J. D. and T. T. Charalampopoulos. “Gray Gas Weighting Coefficients for Arbitrary Gas-Soot Mixtures". International Journal of Heat and Mass Transfer, \bf 25(12):1849–1855, 1982.

69

Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions. National Bureau of Standards, 1964.

70

Leckner, B. “Spectral and Total Emissivity of Water Vapor and Carbon Dioxide". Combustion and Flame, \bf 19:33–48, 1972.

71

Martinez, M. J. and P. I. Hopkins. “Modeling Subsurface Multiphase Transport of JP8 During a Fuel Spill Fire". Technical Report, SAND2000-2464, Sandia National Laboratories, Albuquerque, NM, October 2000.

72

Saito, K. G. Tashtoush, C. Cremers, and L. A. Gritzo. “Flame Spread over JP8 Aircraft Fuel". to appear in Combustion Science and Technology, 1997.

73

Gritzo, L. A., E. A. Boucheron, and D. Murray. “Fuel Temperature Distribution and Burning Rate in Large Pool Fires". NIST Annual Conference on Fire Research, Gaithersburg, MD, October 1996.

74

Gritzo, L. A., V. F. Nicolette, S. R. Tieszen, and J. L. Moya. “Heat Transfer to the Fuel Surface in Large Pool Fires". In S. H. Chan, editor, Transport Phenomenon in Combustion, 701–712. Taylor and Francis, 1996.

75

Blinov, V. I. and G. N. Khudiakov. “Diffusion Burning of Liquids". Technical Report, English Translation: U.S. Army Engineering Research and Development Labs, Fort Belvoir, VA, Report AERDL-T-1490-A, 1961.

76

Mansfield, J. M. and L. J. Linley. “Measurement and Statistical Analysis of Flame Temperatures from Large Fuel Spill Fires". Technical Report, NWC TP 7061, Naval Air Warfare Center, China Lake, CA, 93555, 1991.

77

Cline, D. D. and L. N. Koenig. “The Transient Growth of an Unconfined Pool Fire". Fire Technology, \bf 19(3):149–162, 1983.

78

Magnoli, D. E. “A Model for Fuel Fire Duration and Application to the B-1B Bomber". Technical Report, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-112576, 1992.

79

S. P. Domino. Towards verification of sliding mesh algorithms for complex applications using mms. Proceedings of the 2010 Summer Program, Center for Turbulence Research, 2010.

80

M. Discacciati, A. Quarteroni, and A. Valli. Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM Journal of Numerical Analysis, 45(3):1246–1268, 2007.

81

G. S. Beavers and D. D. Joseph. Boundary conditions at a naturally permeable wall. J. Fluid Mech., 30:197–207, 1967.

82

P. G. Saffman. On the boundary condition at the surface of a porous medium. Studies in Applied Mathematics, 50(2):93–101, 1971.

83

R. H. Davis and H. A. Stone. Flow through beds of porous particles. Chemical Engineering Science, 48(23):3993–4005, 1993.

84

Mencinger, J. and Zun, I. A plic–vof method suited for adaptive moving grids. Journal of Computational Physics, \bf 230:644–663, 2011.

85

Martinez, J. and Chesneau, X. and Zeghmati, B. A new curvature technique calculation for surface tension contribution in plic-vof method. Computational Mechanics, \bf 37:182–193, 2006.

86

Sun, M. Accuracy improvement of plic-vof volume-tracking method using the equation of surface. Advances in Pure Mathematics, \bf 3:219–225, 2013.

87

Huang, M. and Wu, L. and Chen, B. A piecewise linear interface-capturing volume-of-fluid method based on unstructured grids. Numerical Heat Transfer, Part B: Fundamentals, \bf 61:412–437, 2012.

88

Lee, H. and Rhee, S. A dynamic interface compression method for vof simulations of high-speed planing watercraft. Journal of Mechanical Science and Technology, \bf 29:1849–1857, 2015.

89

Raeini, A. and Blunt, M. and Bijeljic, B. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics, \bf 231:5653–5668, 2012.

90

Jofre, L. and Lehmkuhl, O. and Castro, J. and Olivia, A. A plic-vof implementation on parallel 3d unstructured meshes. In Lisbon Portugal, editor, European Conference on Computational Fluid Dynamics. 2010.

91

Hardt, S. and Wondra, F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms. Journal of Computational Physics, \bf 227:5781–5895, 2008.

92

Francois, M. M. and Cummins, S. J. and Dendy, E. D. and Kothe, D. B. and Sicilian, J. M. and Williams, M. W. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. Journal of Computational Physics, \bf 213:141–173, 2006.

93

Lin, S. and Yan, J. and Kats, D. and Wagner, G. A volume-conserving balanced-force level set method on unstructured meshes using a control volume finite element formulation. Journal of Computational Physics, \bf 380:119–142, 2019.

94

Law, C. K. “Recent Advances in Droplet Vaporization and Combustion". Prog. Energy Combust Sci., \bf 8(3):171–201, 1982.

95

Sirignano, W. A. “Fuel Droplet Vaporization and Spray Combustion Theory". Prog. Energy Combust Sci., \bf 9(4):291–322, 1983.

96

Faeth, G. M. “Evaporation and combustion of sprays". Prog. Energy Combust Sci., \bf 9:1–76, 1983.

97

Amsden, A. A., et al. “KIVA: A Computer Program for Two-and Three-Dimensional Fluid Flows with Chemical Reactions and Fuel Sprays". 1985.

98

Faeth, G.M. “Mixing, Transport and Combustion in Sprays". Prog. Energy Combust Sci., \bf 13:293–345, 1987.

99

Amsden, A.A., P.O'Rourke, and T.D. Butler. “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays". 1989.

100

Crowe, C., M. Sommerfeld, and Y. Tsuji. “Multiphase flows with droplets and particles". CRC Press, New York, NY, 1998.

101

Sommerfeld, M. and H.H. Qiu. “Experimental studies of spray evaporation in turbulent flow". International Journal of Heat and Fluid Flow, \bf 19(1):10–22, 1998.

102

Shaw, R.A. “ Particle-turbulence interactions in atmospheric clouds". Annual Review of Fluid Mechanics, \bf 35:183–227, 2003.

103

Holen, J., M. Brostrom, and B.F. Magnussen. “Finite Difference Calculation of Pool Fire". Proc. Combust. Instit., \bf 23:1677–1683, 1990.

104

Yoon, S.S., et al. “Numerical modeling and experimental measurements of a high speed solid-cone water spray for use in fire suppression applications". International Journal of Multiphase Flow, \bf 30(11):1369–88, 2004.

105

DesJardin, P.E. and L.A. Gritzo. “A Dilute Spray Model for Fire Simulations: Formulation, Usage and Benchmark Problems". “Sandia Technical Report", 2002.

106

Maxey, M.R. and J.J. Riley. “Equation of motion for a small rigid sphere in a nonuniform flow". Phys. Fluids, \bf 26(4):883–889, 1983.

107

Williams, F.A. “Spray Combustion and Atomization". Physics of Fluids, \bf 1(6):541–545, 1958.

108

O'Rourke, P.J. and A.A. Amsden. “The TAB Method for Numerical Calculation of Spray Droplet Breakup". SAE Technical Paper 872089, 1987.

109

Patankar, S.V. “Numerical Heat Transfer and Fluid Flow". Taylor and Francis, 1980.

110

Gosman, A.D. and E. Ioannides. “Aspects of computer simulation of liquid-fueled combustors". AIAA Paper 81-0323, 1981.

111

Shuen, J.S., L.D. Chen, and G.M. Faeth. “Evaluation of a stochastic model of particle dispersion in a turbulent round jet". AIChE Journal, \bf 29(1):167–70, 1983.

112

Zhou, Q. and S.C. Yao. “Group modeling of impacting spray dynamics". International Journal of Heat and Mass Transfer, \bf 35(1):121–9, 1992.

113

Dukowicz, J.K. “A Particle-Fluid Numerical Model for Liquid Sprays". Journal of Computational Physics, \bf 35(2):229–253, 1980.

114

Jones, W.P. and B.E. Launder. “Prediction of Laminarization with a 2-Equation Model of Turbulence". Int. J. Heat Mass Transfer, \bf 15:301, 1972.

115

Yuen, M.C. and L.W. Chen. “On Drag of Evaporating Liquid Droplets". Combust. Sci. Technol., \bf 14(4-5-6):147–154, 1976.

116

Taylor, G.I. “Diffusion by continuous movement". Proc. London Math. Soc., \bf 20:196–211, 1921.

117

Snyder, W.H. and J.L. Lumley. “Some measurements of particle velocity autocorrelation functions in a turbulent flow". Journal of Fluid Mechanics, \bf 48:41, 1971.

118

Abramzon, B. and W.A. Sirignano. “Droplet vaporization model for spray combustion calculations". International Journal of Heat and Mass Transfer, \bf 32(9):1605–18, 1989.

119

Modest, M.F. “Radiative Heat Transfer". Academic Press, second ed. edition, 2003.

120

Lefebvre, A.H. “Atomization And Sprays". Hemisphere, 1988.

121

Johns, L.E. and R.B. Beckmann. “Mechanism of dispersed-phase mass transfer in viscous single-drop extraction systems". Amer. Instit. Chem. Eng. J., \bf 12(1):10–16, 1966.

122

Sirignano, W.A. “Fluid Dynamics and Transport of Droplets and Sprays". Cambridge University Press, New York, NY, 1999.

123

van de Hulst, H.C. “Light Scattering by Small Particles". Dover, New York, 1981.

124

Yoon, S.S., et al. “Numerical Modeling and Experimental Measurements of Water Spray Impact and Transport over a Cylinder". Int. J. Multiphase Flow, 2005.

125

Erikson, W.W. and W. Gill. “Analytic Model for Propellant Fire Heat Transfer with Deposition". JANNAF 40th CS, 28th APS, 22nd PSHS and 4th MSS Joint Meeting, 2005.

126

O'Rourke, P.J. “Statistical properties and numerical implementation of a model for droplet dispersion in a turbulent gas". Journal of Computational Physics, \bf 83(2):345–60, 1989.

127

Zienkiewicz, O. C. and R. L. Taylor. The Finite Element Method, \rm 4th ed., Vol. 1. McGraw-Hill, 1989.

128

Zienkiewicz, O. C. and R. L. Taylor. The Finite Element Method, \rm 4th ed., Vol. 2. McGraw-Hill, 1991.

129

Gresho, P. M, S. T. Chan, R. L. Lee, and C. D. Upson. “A Modified Finite Element Method for Solving the Time-Dependent, Incompressible Navier-Stokes Equations. Part I: Theory". International Journal for Numerical Methods in Fluids, \bf 4:557–598, 1984.

130

Patankar, S. V. “Recent Developments in Computational Heat Transfer". Journal of Heat Transfer, \bf 110(4B):1037–1045, 1988.

131

Shyy, W. “Elements of Pressure-Based Computational Algorithms for Comples Fluid Flow and Heat Transfer". In Hartnett, J. P. and T. F. Irvine, editor, Advances in Heat Transfer, volume \bf 24, pages 191–275. Academic Press, Inc., 1994.

132

Ferziger, J. H. and M. Perić. Computational Methods for Fluid Dynamics. Springer-Verlag, 1996.

133

Baliga, B. R. and S. V. Patankar. “A New Finite-Element Formulation for Convection-Diffusion Problems". Numerical Heat Transfer, \bf 3(4):393–409, 1980.

134

Baliga, B. R. “A Control Volume Based Finite Element Method for Convective Heat and Mass Transfer". PhD thesis, University of Minnesota, Minneapolis, MN, 1978.

135

Baliga, B. R. and S. V. Patankar. “A Control Volume Finite-Element Method for Two-Dimensional Fluid Flow and Heat Transfer". Numerical Heat Transfer, \bf 6(3):245–261, 1983.

136

Schneider, G. E. and M. Zedan. A Control Volume Based Finite Element Formulation of the Heat Conduction Equation. In H. E. Collicott and P. E. Bauer, editor, Spacecraft Thermal Control, Design and Operation, volume \bf 86, pages 305–327. Progress in Astronautics and Aeronautics, 1983.

137

Schneider, G. E. and M. J. Raw. “A Skewed, Positive Influence Coefficient Upwinding Procedure for Control-Volume-Based Finite-Element Convection-Diffusion Computation". Numerical Heat Transfer, \bf 9(1):1–26, 1986.

138

Swaminathan, C. R. and V. R. Voller. “Streamline Upwind Scheme for Control-Volume Finite Elements, Part I. Formulations". Numerical Heat Transfer, Part B, \bf 22(1):95–107, 1992.

139

Patankar, S. V. Numerical Heat Transfer and Fluid Flow. Hemisphere, 1980.

140

none. Tascflow theory documentation. Technical Report, Advanced Scientific Computing, Ltd., Waterloo, Ontario, 1995.

141

Winslow, A. M. “Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh". Journal of Computational Physics, \bf 1(2):149–172, 1966.

142

Ramadhyani, S. and S. V. Patankar. “Solution of the Poisson Equation: Comparison of the Galerkin and Control-Volume Methods". International Journal for Numerical Methods in Engineering, \bf 15:1395–1418, 1980.

143

Baliga, B. R., T. T. Pham and S. V. Patankar. “Solution of Some Two-Dimensional Incompressible Fluid Flow and Heat Transfer Problems Using a Control Volume Finite-Element Method". Numerical Heat Transfer, \bf 6(3):263–282, 1983.

144

Prakash, C. and S. V. Patankar. “A Control Volume-Based Finite-Element Method for Solving the Navier-Stokes Equations Using Equal-Order Velocity-Pressure Interpolation". Numerical Heat Transfer, \bf 8(3):259–280, 1985.

145

Ramadhyani, S. and S. V. Patankar. “Solution of the Convection-Diffusion Equation by a Finite-Element Method Using Quadrilateral Elements". Numerical Heat Transfer, \bf 8(5):595–612, 1985.

146

Raithby, G. D. “Skew Upstream Differencing Schemes for Problems Involving Fluid Flow". Computer Methods in Applied Mechanics and Engineering, \bf 9:153–164, 1976.

147

Raw, M. J. “A New Control-Volume-Based Finite Element Procedure for the Numerical Solution of the Fluid Flow and Scalar Transport Equations". PhD thesis, University of Waterloo, Ontario, Canada, 1985.

148

LeDain-Muir, B. and B. R. Baliga. “Solution of Three-Dimensional Convection-Diffusion Problems Using Tetrahedral Elements and Flow-Oriented Upwind Interpolation Functions". Numerical Heat Transfer, \bf 9(2):143–162, 1986.

149

Prakash, C. “An Improved Control Volume Finite-Element Method for Heat and Mass Transfer, and for Fluid Flow Using Equal-Order Velocity-Pressure Interpolation". Numerical Heat Transfer, \bf 9(3):253–276, 1986.

150

Schneider, G. E. and M. J. Raw. “Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Colocated Variables–1. Computational Procedure". Numerical Heat Transfer, \bf 11(4):363–390, 1987.

151

Schneider, G. E. and M. J. Raw. “Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Colocated Variables–2. Application and Validation". Numerical Heat Transfer, \bf 11(4):391–400, 1987.

152

Schneider, G. E. “Preliminary Results of a Novel Fluid Flow Prediction Procedure Applied to Axi-Symmetric Problems". AIAA Paper 87-1639, 22nd Thermophysics Conference, Honolulu, HA, June 1987.

153

Prakash, C. “Examination of the Upwind (Donor-Cell) Formulation in Control Volume Finite Element Methods for Fluid Flow and Heat Transfer". Numerical Heat Transfer, \bf 11(4):401–416, 1987.

154

Hookey, N. A., B. R. Baliga and C. Prakash. “Evaluation and Enhancements of Some Control Volume Finite-Element Methods–1. Convection-Diffusion Problems". Numerical Heat Transfer, \bf 14(3):255–272, 1988.

155

Hookey, N. A. and B. R. Baliga. “Evaluation and Enhancements of Some Control Volume Finite-Element Methods–1. Incompressible Fluid Flow Problems". Numerical Heat Transfer, \bf 14(3):273–293, 1988.

156

van Doormaal, J. P. and G. D. Raithby. “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows". Numerical Heat Transfer, \bf 7:147–163, 1984.

157

Schneider, G. E. Elliptic Systems: Finite-Element Method I. In Minkowycz, W. J., E. M. Sparrow, G. E. Schneider and R. H. Pletcher, editor, Handbook of Numerical Heat Transfer, chapter 10, pages 379–420. John Wiley & Sons, Inc., 1988.

158

Baliga, B. R. and S. V. Patankar. Elliptic Systems: Finite-Element Method II. In Minkowycz, W. J., E. M. Sparrow, G. E. Schneider and R. H. Pletcher, editor, Handbook of Numerical Heat Transfer, chapter 11, pages 421–462. John Wiley & Sons, Inc., 1988.

159

Swaminathan, C. R. and V. R. Voller. “Streamline Upwind Scheme for Control-Volume Finite Elements, Part II. Implementaion and Comparison with the SUPG Finite-Element Scheme". Numerical Heat Transfer, Part B, \bf 22(1):109–124, 1992.

160

Brooks, A. N. and T. J. R. Hughes. “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations". Computer Methods in Applied Mechanics and Engineering, \bf 32:199–259, 1982.

161

Baliga, B. R. and H. J. Saabas. “Control-Volume Finite Element Methods for Incompressible Fluid Flow". Invited Keynote Lecture on Fluid Mechanics, III Portuguese Conference on Computational Mechanics, Coimbra, Portugal, September 1992.

162

Naterer, G. F. and G. E. Schneider. “Physical Influences of Integration Point Equations On a Control-Volume-Based Finite Element Method for Compressible Flows". AIAA Paper 92-0365, 30th Aerospace Sciences Meeting, Reno, NV, January 1992.

163

Swaminathan, C. R., V. R. Voller and S. V. Patankar. “A Streamline Upwind Control Volume Finite Element Method for Modeling Fluid Flow and Heat Transfer Problems". Finite Elements in Analysis and Design, \bf 13(2-3):169–184, 1993.

164

Saabas, H. J. and B. R. Baliga. “Co-Located Equal-Order Control-Volume Finite-Element Method for Multidimensional, Incompressible, Fluid Flow–Part I: Formulation". Numerical Heat Transfer, Part B, \bf 26(4):381–407, 1994.

165

Saabas, H. J. and B. R. Baliga. “Co-Located Equal-Order Control-Volume Finite-Element Method for Multidimensional, Incompressible, Fluid Flow–Part II: Verification". Numerical Heat Transfer, Part B, \bf 26(4):409–424, 1994.

166

Masson, C., H. J. Saabas and B. R. Baliga. “Co-Located Equal-Order Control-Volume Finite Element Method for Two-Dimensional Axisymmetric Incompressible Fluid Flow". Internation Journal for Numerical Methods in Fluids, \bf 18(1):1–26, 1994.

167

Masson, C. and B. R. Baliga. “A Control Volume Finite-Element Method for Dilute Gas-Solid Particle Flows". Computers and Fluids, \bf 23(8):1073–1096, 1994.

168

Karimian, S. M. H. and G. E. Schneider. “Numerical Solution of Two-Dimensional Incompressible Navier-Stokes Equations: Treatment of Velocity-Pressure Coupling". AIAA Paper 94-2359, 25th AIAA Fluid Dynamics Conference, Colorado Springs, CO, June 1994.

169

Karimian, S. M. H. and G. E. Schneider. “Pressure-Based Computational Method for Compressible and Incompressible Flows". Journal of Thermophysics and Heat Transfer, \bf 8(2):267–274, 1994.

170

Deng, G. B., J. Piquet, P. Queutey and M. Visonneau. “Incompressible Flow Calculations With a Consistent Physical Interpolation Finite Volume Approach". Computers and Fluids, \bf 23(8):1029–1047, 1994.

171

Rhie, C. M. and W. L. Chow. “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation". AIAA Journal, \bf 21(11):1525–1532, November 1983.

172

Costa, V. A. F., L. A. Oliveira and A. R. Figueiredo. “A Control-Volume Based Finite Element Method for Three-Dimensional Incompressible Turbulent Fluid Flow, Heat Transfer, and Related Phenomena". International Journal for Numerical Methods in Fluids, \bf 21(7):591–613, 1995.

173

Karimian, S. M. H. and G. E. Schneider. “Application of a Control-Volume-Based Finite-Element Formulation to the Shock Tube Problem (TN)". AIAA Journal, \bf 33(1):165–, 1995.

174

Karimian, S. M. H. and G. E. Schneider. “Pressure-Based Control-Volume Finite Element Method for Flow at All Speeds". AIAA Journal, \bf 33(9):1611–1618, September 1995.

175

Padra, C. and A. Larreteguy. “A-Posteriori Error Estimator for the Control-Volume Finite-Element Method as Applied to Convection-Diffusion Problem". Numerical Heat Transfer, Part B, \bf 27(1):63–80, 1995.

176

Larreteguy, A. E. “An Equal-Order Control-Volume Finite-Element Method for Fluid Flow in Arbitrary Triangulations". Numerical Heat Transfer, Part B, \bf 28:401–413, 1995.

177

Harms, T. M., T. W. von Backström and J. P. du Plessis. “Simplified Control-Volume Finite-Element Method". Numerical Heat Transfer, Part B, \bf 30(2):179–194, 1996.

178

Comini, G., S. Del Giudice, and C. Nonino. “Energy Balances in CVFEM and GFEM Formulations of Convection-Type Problems". International Journal for Numerical Methods in Engineering, \bf 39(13):2249–2263, 1996.

179

Neises, J. and I. Steinbach. “Finite Element Integration for the Control Volume Method". Communications in Numerical Methods in Engineering, \bf 12(9):543–556, 1996.

180

Völker, S., T. Burton and S. P. Vanka. “Finite-Volume Multigrid Calculation of Natural-Convection Flows on Unstructured Grids". Numerical Heat Transfer, Part B, \bf 30(1):1–22, 1996.

181

Botta, N. and D. Hempel. “Finite-Volume Projection Method for Incompressible Flows on Triangular Grids". Hamburger \protect Beiträge zur Angewandten Mathematik, Reihe A, Preprint 110, September 1996.

182

Darbandi, M. and G. E. Schneider. “Momentum Variable Procedure for Solving Compressible and Incompressible Flows". AIAA Journal, \bf 35(12):1801–1805, 1997.

183

B. R. Baliga. “Control-Volume Finite Element Methods for Fluid Flow and Heat Transfer". In Minkowycz, W. J. and E. M. Sparrow, editor, Advances in Numerical Heat Transfer, Volume 1, pages 97–135. Taylor and Francis, 1997.

184

O'Rourke, P. J., and M. S. Sahota. “A Variable Explicit/Implicit Numerical Method for Calculating Advection on Unstructured Meshes". Journal of Computational Physics, \bf 143:312–345, 1998.

185

Gresho, P. M. and R. L. Sani. Incompressible Flow and the Finite Element Method. John Wiley and Sons, 1998.

186

Venditti, D. A. and B. R. Baliga. “An h-Adaptive Strategy for CVFEM Simulations of Viscous Incompressible Flow". Proc. 6th Annual Conference of the Computational Fluid Dynamics Society of Canada (CFD 98), pp. VIII-65–VIII-70, Quebec City, Canada, June 7-9, 1998.

187

Reyes, M., J. Rincon, J. and J. Damia. “Simulation of Turbulent Flow in Irregular Geometries Using a Control-Volume Finite-Element Method". Numerical Heat Transfer, Part B, \bf 39(1):79–90, 2001.

188

Campos Silva, J. B. and L. F. M. de Moura. “A Control-Volume Finite-Element Method (CVFEM) for Unsteady, Incompressible, Viscous Fluid Flows". Numerical Heat Transfer, Part B, \bf 40(1):61–82, 2001.

189

Zhao, Y., J. Tai, and F. Ahmed . “Simulation of Micro Flows with Moving Boundaries Using High-Order Upwind FV Method on Unstructured Grids". Computational Mechanics, \bf 28:66–75, 2002.

190

Kettleborough, C. F., S. R. Husain, and C. Prakash. “Solution of Fluid Flow Problems with the Vorticity-Streamfunction Formulation and the Control Volume Based Finite-Element Method". Numerical Heat Transfer, Part B, \bf 16(1):31–58, 1989.

191

Choudhury, S. and R. A. Nicolaides. “Discretization of Incompressible Vorticity-Velocity Equations on Triangular Meshes". Internation Journal for Numerical Methods in Fluids, \bf 11(6):823–, 1990.

192

Krakov, M. S. “Control Volume Finite-Element Method for Navier-Stokes Equations in Vortex-Streamfunction Formulation". Numerical Heat Transfer, Part B, \bf 21(2):125–145, 1992.

193

Elkaim, D., M. Reggio, and R. Camarero. “Simulating Two-Dimensional Turbulent Flow by Using the k-epsilon Model and the Vorticity-Streamfunction Formulation". International Journal for Numerical Methods in Fluids, \bf 14(8):961–980, 1992.

194

Elkaim, D., F. McKenty, M. Reggio, and R. Camarero. “Control Volume Finite Element Solution of Confined Turbulent Swirling Flows". International Journal for Numerical Methods in Fluids, \bf 19(2):135–152, 1994.

195

Banaszek, J. A. “A Conservative Finite Element Method for Heat Conduction Problems". International Journal for Numerical Methods in Engineering, \bf 20:2033–2050, 1984.

196

Blackwell, B. F. “Numerical Prediction of One-Dimensional Ablation Using a Finite Control Volume Procedure with Exponential Differencing". Numerical Heat Transfer, \bf 14:17–34, 1988.

197

Abboud, J. B. and H. Hardisty. “Control-Volume Energy-Balance FE Formulations of the 8-Node Hexahedron Element". Communications in Applied Numerical Methods, \bf 7:141–153, 1991.

198

Blackwell, B. F. and R. E. Hogan. “Numerical Solution of Axisymmetric Heat Conduction Problems Using Finite Control Volume Technique". Journal of Thermophysics and Heat Transfer, \bf 7:462–471, 1993.

199

Blackwell, B. F. and R. E. Hogan. “One-Dimensional Ablation Using Landau Transformation and Finite Control Volume Procedure". Journal of Thermophysics and Heat Transfer, \bf 8(2):282–287, 1994.

200

Ferguson, W. J. and I. W. Turner. “Control Volume Finite Element Model of Mechano-Sorptive Creep in Timber". Numerical Heat Transfer, Part A, \bf 29(2):147–164, 1996.

201

Ferguson, W. J. and I. W. Turner. “A Control Volume Finite Element Numerical Simulation of the Drying of Spruce". Journal of Computational Physics, \bf 125(1):59–70, 1996.

202

Ferguson, W. J. “A Control Volume Finite Element Numerical Solution of Creep Problems". International Journal for Numerical Methods in Engineering, \bf 40(18):3463–, 1997.

203

Forsyth, P. A. “Control Volume Finite Element Approach to NAPL Groundwater Contamination". SIAM Journal on Scientific and Statistical Computing, \bf 12(5):1029–1057, 1991.

204

Letniowski, F. W. and P. A. Forsyth. “A Control Volume Finite Element Method for Three-Dimensional NAPL Groundwater Contamination". International Journal for Numerical Methods in Fluids, \bf 13(8):955–970, 1991.

205

Fung, L. S. K., A. D. Hiebert, and L. X. Nghiem. “Reservoir Simulation With a Control-Volume Finite Element Method". SPE Reservoir Engineering, \bf 7(3):349–, 1992.

206

Durlofsky, L. J. “Accuracy of Mixed and Control Volume Finite Element Approximations to Darcy Velocity and Related Quantities". Water Resources Research, \bf 30(4):965–973, 1994.

207

Eymard, R. and F. Sonier. “Mathematical and Numerical Properties of Control-Volume, Finite-Element Scheme for Reservoir Simulation". SPE Reservoir Engineering, \bf 9(4):283–, 1994.

208

Fung, L. S. K., L. Buchanan, and R. Sharma. “Hybrid-CVFE Method for Flexible-Grid Reservoir Simulation". SPE Reservoir Engineering, \bf 9(3):188–194, 1994.

209

Jones, J. E., Z. Cai, S. F. McCormick, and T. F. Russell. “Control-Volume Mixed Finite Element Methods". Technical Report TR-97-16, ICASE, Langley, VA, February 1997.

210

Gottardi, G. and M. Venuttelli. “A Control-Volume Finite-Element Model for Two-Dimensional Overland Flow". Advances in Water Resources, \bf 16(5):277–, 1993.

211

Di Giammarco, P., E. Todini and P. Lamberti. “A Conservative Finite Elements Approach to Overland Flow: The Control Volume Finite Element Formulation". Journal of Hydrology, \bf 175(1-4):267–291, 1996.

212

Oñate, E., M. Cervera, and O. C. Zienkiewicz. “A Finite Volume Method for Structural Mechanics". Internation Journal for Numerical Methods in Engineering, \bf 37:181–201, 1994.

213

Bailey, C. and M. Cross. “A Finite Volume Procedure to Solve Elastic Solid Mechanics Problems in Three Dimensions on an Unstructured Mesh". Internation Journal for Numerical Methods in Engineering, \bf 38:1757–1776, 1995.

214

Majumdar, S. “Role of Under-relaxation in Momentum Interpolation for Calculation of Flow with Non-staggered Grids". Numerical Heat Transfer, \bf 13:125–132, 1988.

215

Perić, M., R. Kessler, and G. Scheuerer. “Comparison of Finite-Volume Numerical Methods with Staggered and Colocated Grids". Computers and Fluids, \bf 16(4):389–403, 1988.

216

Papageorgakopoulos, J, G. Arampatzis, D. Assimacopoulos, and N. C. Markatos. “Enhancement of the momentum interpolation method on non-structured grids". Int. J. Numer. Meth. Fluids, \bf 33:1–22, 2000.

217

Codina, R. “Pressure stability in fractional step finite element methods for incompressible flows". J. Comp. Phys., \bf 170:112–140, 2001.

218

Soto, O. R., F. Löhner, and J. Cebral. “An implicit monolithic time accurate finite element scheme for incompressible flow problems". AIAA-2001-2616, 2001.

219

Almgren, A. S., J. B. Bell, and W. Y. Crutchfield. “Approximate projection methods: part I. inviscid analysis". SIAM J. Sci. Comp., \bf 22:1139–1159, 2000.

220

Codina, R. and S. Badia. “On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems". Comp. Methods. Appl. Mech. Engr., \bf 170:112–140, 2005.

221

Dukowicz, J. K. and A. S. Dvinsky. “Approximate Factorization as a High Order Splitting for the Implicit Incompressible Flow Equations". Journal of Computational Physics, \bf 102:336–347, 1992.

222

Strikwerda, J. C. and Y. S. Lee. "The accuracy of the fractional step method". SIAM J. Numer. Anal., \bf 37:37–48, 1999.

223

Perot, J. B. “An Analysis of the Fractional Step Method". Journal of Computational Physics, \bf 108:51–58, 1993.

224

Chorin, A. J. “Numerical Solution of the Navier-Stokes Equations". Mathematics of Computation, \bf 22(104):745–762, 1968.

225

Kim, D. and H. Choi. “A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids". J. Comp. Phys., \bf 162:411–428, 2000.

226

Kim, J. and P. Moin. “Application of a Fractional Step Method to Incompressible Navier-Stokes Equations". Journal of Computational Physics, \bf 59(2):308–323, 1985.

227

Brown, D. L., R. Cortez, and M. Minion. “Accurate projection method for the incompressible Navier-Stokes equations". J. Comp. Phys., \bf 168:464–499, 2001.

228

Domino et. al. “Fuego Verification Manual". Sandia National Laboratories, http://scico.sandia.gov/fuego, 2007.

229

Ober, C. C. and J. N. Shadid. “Studies on the accuracy of time-integration methods for the radiation-diffusion equations". J. Comp. Phys., \bf 195:743–772, 2004.

230

Hirsch, C. Numerical Computation of Internal and External Flows, Volume 2. John Wiley & Sons, 1990.

231

Jameson, A. “Artificial Diffusion, Upwind Biasing, Limiters and Their Effect on Accuracy and Multigrid Convergence in Transonic and Hypersonic Flows". AIAA Paper 93-3359, 11th AIAA Computational Fluid Dynamics Conference, Orlando, FL, July 1993.

232

Christie, I. and C. Hall. “The Maximum Principle for Bilinear Elements". International Journal for Numerical Methods in Engineering, \bf 20(3):549–553, 1984.

233

Yeap, C. F. and J. A. Pearce. “A Unified Subroutine for the Solution of 2D and 3D Axisymmetric Diffusion Equation". Advances in Engineering Software, \bf 11(3):118–127, 1989.

234

Blackwell, B. F., R. J. Cochran, and R. E. Hogan. “A Formal Method for Computing Thermal Conductors for Arbitrary, Complex Geometries". ASME-HTD Vol. 311, pp. 31–42, 30th National Heat Transfer Conference, Portland, OR, August 1995.

235

Gresho, P. M, and R. L. Lee. “Don't Suppress the Wiggles—They're Telling You Something". Computers and Fluids, \bf 9(2):223–253, 1981.

236

Flanagan, D. P. and T. Belytschko. “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal Hourglass Control". International Journal for Numerical Methods in Engineering, \bf 17:679–706, 1981.

237

Aftosmis, M. “Upwind Method for Simulation of Viscous Flow on Adaptively Refined Meshes". AIAA Journal, \bf 32(2):268–277, 1994.

238

Kallinderis, Y. G. and J. R. Baron. “Adaptive Methods for a New Navier-Stokes Algorithm". AIAA Journal, \bf 27(1):37–43, 1989.

239

Kallinderis, Y. and P. Vijayan. “Adaptive Refinement-Coarsening Scheme for Three-Dimensional Unstructured Meshes". AIAA Journal, \bf 31(8):1440–1447, 1993.

240

Mavriplis, D. J. “Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes". International Journal for Numerical Methods in Fluids, \bf 34(2):93–111, 2000.

241

S. Gordan and B. J. McBride. Computer program for calculation of complex chemical equilibrium compositions and applications I. analysis. Technical Report Ref. Publication 1311, NASA, October 1994.

242

B. J. McBride and S. Gordan. Computer program for calculation of complex chemical equilibrium compositions and applications II. users manual and program description. Technical Report Ref. Publication 1311, NASA, June 1996.