Variable length scale in a peridynamic body

Stewart Silling
Sandia National Laboratories

Pablo Seleson
University of Texas, Austin

SIAM Conference on Mathematical Aspects of Materials Science, Philadelphia, PA, June 12, 2013
Outline

• Peridynamics background
 • States, horizon
• Rescaling a material model (at a point)
• Variable length scale (over a region)
• Partial stress
• Local-nonlocal coupling examples
Peridynamics basics: The nature of internal forces

Standard theory
Stress tensor field
(assumes contact forces and smooth deformation)

\[\rho \ddot{u}(x, t) = \nabla \cdot \sigma(x, t) + b(x, t) \]
Differentiation of contact forces

Peridynamics
Bond forces within small neighborhoods
(allow discontinuity)

\[\rho \ddot{u}(x, t) = \int_{H_x} f(q, x) dV_q + b(x, t) \]
Summation over bond forces

\[H_x = \text{Family of } x \]

Horizon \(\delta \)
Peridynamics basics: Deformation state and force state

- The **deformation state** maps each bond to its deformed image.
 \[Y[x](q - x) = y(q) - y(x) \]
- The **force state** maps bonds to bond forces according to the constitutive model.
 \[f(q, x) = T[x](q - x) - T[q](x - q) \]
- The **constitutive model** maps deformation states to force states.
 \[T[x] = \hat{T}(Y[x]) \] \[T[q] = \hat{T}(Y[q]) \]
Scaling of a material model at a point

- Let ϵ and δ be two horizons. Denote by ξ_ϵ and ξ_δ bonds within each family.
- Suppose we have a material model with horizon ϵ. Find a rescaled model with δ.
- Map the bonds (undeformed and deformed):

 \[
 \frac{\xi_\epsilon}{\epsilon} = \frac{\xi_\delta}{\delta}, \quad \frac{Y_\epsilon \langle \xi_\epsilon \rangle}{\epsilon} = \frac{Y_\delta \langle \xi_\delta \rangle}{\delta}
 \]

- Require

 \[
 W_\epsilon (Y_\epsilon) = W_\delta (Y_\delta)
 \]

- It follows from definition of Frechet derivative that the force state scales according to

 \[
 \epsilon^{d+1} T_\epsilon (Y_\epsilon) \langle \xi_\epsilon \rangle = \delta^{d+1} T_\delta (Y_\delta) \langle \xi_\delta \rangle
 \]
Rescaling works fine if the horizon is independent of position

- Example: uniform strain in a 1D homogeneous bar \((d = 1, \ F = \text{constant}) \):
 \[
 y = Fx
 \]
- If we scale the material model as derived above:
 \[
 \epsilon^2 T_\epsilon (F) \langle \xi_\epsilon \rangle = \delta^2 T_\delta (F) \langle \xi_\delta \rangle
 \]
 we are assured that the strain energy density and Young’s modulus are independent of horizon.
- Also the peridynamic equilibrium equation is satisfied.
Variable horizon: the problem

- Same example: uniform strain in a 1D homogeneous bar
 \[y = Fx \]
- Set \(\epsilon = 1 \), define \(Z(F) = T_1(F) \).
- Let the horizon be given by \(\delta(x) \). The scaled force state is
 \[T[x](\xi) = \delta^{-2}(x)Z\left(\frac{\xi}{\delta(x)}\right) \]
- From the previous discussion, we know \(W \) is independent of \(x \).
- There’s just one problem: this deformation isn’t a minimizer of energy.
 - That is, the uniform strain deformation is not in equilibrium.
Origin of artifacts

- The peridynamic force density operator $L(x)$ involves the force state not only at x but also the force states at all points within the horizon.

$$0 = L(x) + b,$$

$$L(x) = \int_{-\infty}^{\infty} \{ T_\delta(x)[x](q - x) - T_\delta(q)[q](x - q) \} dq$$

so simply scaling the material model at x is not sufficient.
“Patch test” requirement for a coupling method

- In a deformation of the form
 \[y(x) = a + Fx \]
 where \(H \) is a constant and the material model is of the form
 \[T[x](\xi) = \delta^{-2}(x)Z(\xi/\delta(x)) \]
 where \(\delta(x) \) is a prescribed function and \(Z \) is a state that depends only on \(F \), we require
 \[L(x) = 0 \quad \text{for all } x. \]
Peridynamic stress tensor

- Define the 1D peridynamic stress tensor field* by

\[v(x) = \int_{0}^{\infty} \int_{0}^{\infty} \{T[x - y](y + w) - T[x + y](-y - w)\} \, dy \, dz \]

- Identity:

\[\frac{dv}{dx} = \int_{-\infty}^{\infty} \{T[x](q - x) - T[q](x - q)\} \, dq \]

- \(v(x) \) is the force per unit area carried by all the bonds that cross \(x \).

Partial stress field

- Under our assumption that
 \[T[x]\langle \xi \rangle = \delta^{-2}(x)Z\langle \xi / \delta(x) \rangle \]
 one computes directly that
 \[\nu_0(x) := \int_{-\infty}^{\infty} \xi T[x]\langle \xi \rangle \, d\xi = \int_{-\infty}^{\infty} \xi Z\langle \xi \rangle \, d\xi \]
 which is independent of \(x \), so \(d\nu_0/dx = 0 \).

- \(\nu_0 \) is called the **partial stress** field.

- Clearly the internal force density field computed from
 \[L_0(x) := d\nu_0/dx \]
 passes the “patch test.”

- This observation leads to the following idea...
Concept for coupling method

- Idea: within a coupling region in which δ is changing, compute the internal force density from

\[L(x) = \frac{dv_0}{dx}(x), \quad v_0(x) = \int_{-\infty}^{\infty} \xi T[x](\xi) d\xi \]

instead of the full PD nonlocal integral.

- Here, Tx is determined from whatever the deformation happens to be near x.
 - Z is no longer involved.
 - The material model has not changed from full PD, but the way of computing L has.
Local-nonlocal coupling idea

- **Local region**
 \[L(x) = \frac{dv_0}{dx} \]
 \[v_0(x) = \sigma(F(x)) \]

- **Transition region**
 \[L(x) = \frac{dv_0}{dx} \]
 \[v_0(x) = \int \xi T[x] T[\xi] \, d\xi \]

- **Nonlocal region**
 \[L(x) = \int \{T[x] T[\xi] - T[x + \xi] T[\xi] \} \, d\xi \]

Good old-fashioned local stress

Partial stress (PS)

Full peridynamic (PD)
Continuum patch test results

- Full PD shows artifacts, as expected.
- PS shows no artifacts, as promised.

\[u = 0 \]
\[u = 0.02 \]
Continuum patch test with coupling

• No artifacts with PD-PS coupling (this was hoped for but not guaranteed).

\[u = 0 \] \[u = 0.02 \]
Pulse propagation test problem

- Does our coupling method work for dynamics as well as statics with variable horizon?

\[\delta = 1 \text{ (nonlocal)} \]

\[\delta = 0.01 \text{ (in effect local)} \]
Pulse propagation test results

- Movies of strain field evolution

Full PD everywhere

Coupled PD-PS
Pulse propagation test results

- Strain field: no artifacts appear in the coupled model the local-nonlocal transition.
Discussion

• The partial stress approach may provide a means for local-nonlocal coupling within the continuum equations.
 • Uses the underlying peridynamic material model but modifies the way internal force density is computed.
 • Expected to work in 2D & 3D, linear & nonlinear.
• PS is inconsistent from an energy minimization point of view.
 • Not suitable for a full-blown theory of mechanics and thermodynamics (as full PD is).
 • Not yet clear what implications this may have in practice.
 • We still need to use full PD for crack progression.
Extra slides
Purpose of peridynamics

- To unify the mechanics of continuous and discontinuous media within a single, consistent set of equations.

![Continuous body](image1.png)
Continuous body
![Continuous body with a defect](image2.png)
Continuous body with a defect
![Discrete particles](image3.png)
Discrete particles

- Why do this? Develop a mathematical framework that help in modeling...
 - Discrete-to-continuum coupling
 - Cracking, including complex fracture patterns
 - Communication across length scales.

![Figure 11.20](image4.png) Pull-out: (a) schematic diagram; (b) fracture surface of SiC/nm glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D. Rawlings.)
Peridynamic vs. local equations

State notation: \(\text{State} \langle \text{bond} \rangle = \text{vector} \)

<table>
<thead>
<tr>
<th>Relation</th>
<th>Peridynamic theory</th>
<th>Standard theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematics</td>
<td>(\underline{Y} \langle q - x \rangle = y(q) - y(x))</td>
<td>(F(x) = \frac{\partial y}{\partial x}(x))</td>
</tr>
<tr>
<td>Linear momentum balance</td>
<td>(\rho \ddot{y}(x) = \int_{\mathcal{H}} \left(t(q, x) - t(x, q) \right) dV_q + b(x))</td>
<td>(\rho \ddot{y}(x) = \nabla \cdot \sigma(x) + b(x))</td>
</tr>
<tr>
<td>Constitutive model</td>
<td>(t(q, x) = \underline{T} \langle q - x \rangle), (\underline{T} = \hat{T}(\underline{Y}))</td>
<td>(\sigma = \hat{\sigma}(F))</td>
</tr>
<tr>
<td>Angular momentum balance</td>
<td>(\int_{\mathcal{H}} \underline{Y} \langle q - x \rangle \times \underline{T} \langle q - x \rangle dV_q = 0)</td>
<td>(\sigma = \sigma^T)</td>
</tr>
<tr>
<td>Elasticity</td>
<td>(\underline{T} = W_{\underline{Y}}) (Fréchet derivative)</td>
<td>(\sigma = W_F) (tensor gradient)</td>
</tr>
<tr>
<td>First law</td>
<td>(\dot{\varepsilon} = \underline{T} \cdot \dot{\underline{Y}} + q + r)</td>
<td>(\dot{\varepsilon} = \sigma \cdot \dot{F} + q + r)</td>
</tr>
</tbody>
</table>

\[\underline{T} \cdot \dot{\underline{Y}} := \int_{\mathcal{H}} \underline{T} \langle \xi \rangle \cdot \dot{\underline{Y}} \langle \xi \rangle dV_{\xi} \]