Balloon Darts: Fast Approximate Union Volume in High Dimensions with Line Samples

Scott A. Mitchell
Mohamed S. Ebeida
Muhammad A. Awad

SIAM GD/SPM
November 2013 talk only
Outline

• What is the problem – bunch of spheres overlapping, estimate the volume covered by one or more of them, the volume of their union.
 – Related problems – boxes, other booleans
• Standard power-cell in 2d, what goes wrong in high d
• Three variants, with sampling versions
 – Power Cells
 – Occlusion
 – Depth
• BF-Alg
 – First to implement it
• Neighbors
• Scaling studies
• 15 minutes, plus 5 for speaker transition
UnionVolume Problem Definition

• Collection of balls (spheres) that overlap arbitrarily.
 – Calculate the volume covered by one or more of them,
 \(<\rightarrow\) calculate the volume of the union of spheres
 – UnionVolume < sum of volumes
 • some volume is overcounted, in multiple balls

• Closely related problems
 – Collection of boxes, convex shapes
 – Intersection
Standard Approach in 2d

- Partition the shared-overlapped volume, assign piece to one sphere. Estimate each cell. Overlapped volume counted only once.
- Power cells
 - Partition into cells, subregions closer to the sphere than any other
 - Line through two points of sphere intersection separates cells
 - Define “closer” weighted by radius
- For each sphere
 - compute its power cell
 - intersect lines one point per pair
 - linear number of boundary points
 - subdivide power cell into sectors and triangles
 - Two types
 - Linear number of them
 - add up analytic area of the sectors and triangles
Why Hard in High Dimensions? d=30

- Partition the shared-overlapped volume, assign piece to one sphere. Estimate each cell. Overlapped volume counted only once.

- Power cells
 - Partition into cells, subregions closer to the sphere than any other
 - (d-1) hyperplane through (d-2) sphere of intersection separates cells
 - Define “closer” weighted by radius

- For each sphere
 - Compute its power cell
 - Intersection of hyperplanes for d+1 of them, there are k-choose-d (d-k)-dimensional faces
 - Combinatorial complexity explosion
 - Subdivide power cell into sectors and triangles
 - Many types combinatorial complexity explosion
 - Number of them exponential in d
 - Add up analytic area of the sectors and triangles
Why Hard in High Dimensions?

• Problem:
 – Computing faces of the boundary of the union or of cells is intractable, factorial in dimension

• Solution:
 – We don’t care about the boundary
 – Estimate the volume without constructing the boundary
Simple Point Estimation

• **Power cells**
 – Partition into cells, subregions closer to the sphere than any other

• For each ball
 – \(V \) compute its volume in isolation
 – sample points from the ball, \(S = \{\text{hits} \mid \text{misses}\} \)
 • if point in cell, its a hit. else miss.
 – \(V\text{-estimate} = \frac{\text{V hits}}{\text{hits + misses}} \)
 – Simple primitives:
 • generate point in sphere
 • compute weighted distances
 • hit if dist < other distances

\[
v\text{-est} = \frac{3}{3+2} = \frac{3v}{5}
\]

\[
v\text{-est} = \frac{4}{4+0} = v
\]
Simple Point Estimation

- **Occlusion Cells**
 - Order the sphere from 1-n
 - k is “above” k+1, owns the overlap volume

- **For each ball**
 - V compute its volume in isolation
 - sample points from the ball, S = {hits | misses}
 - if point in cell, it's a hit. else miss.
 - V-estimate = V hits / (hits + misses)
 - This part was the same! Only the cell definition was different.

![Diagram showing occlusion cells with spheres and points indicating hits and misses.]

\[\text{v-est} = \frac{v}{2/(2+3)} = \frac{2v}{5} \]

Hint, order the balls so the big ones are not occluded and volume is analytically exact.
Simple Point Estimation

- **Depth Cells**
 - Overlapped regions owned equally

- For each ball
 - V compute its volume in isolation
 - sample points from the ball
 - depth = how many balls it is in
 - V-estimate =
 \[V \left(\frac{1}{\text{#points}} \right) \sum_p \left(\frac{1}{\text{depth}} \right) \]
- Simple primitives, about as much work as occluded samples

\[\text{depth} = \]
Line Sample Estimation

• For any of the three methods: power cells, occlusion cells, depth cells

• For each ball
 – V compute its volume in isolation
 – sample radial lines
 – get segments of the line in the cell
 • weight by distance from center = swept volume
 – V-estimate = V average weighted swept volume

\[
\begin{align*}
2-d: & \quad dv = r \, d\theta \\
\text{high-d:} & \quad dv = r^{d-1} \, d\theta
\end{align*}
\]
Bringman Friedrich Algorithm

• State of the art UnionVolume estimate in theory
 – Estimates frequency that random ball point is in another ball

• Repeat
 – Pick a random ball (uniform by volume)
 • p: pick a point from the ball
 – Repeat
 • B: pick another random ball
 (uniform by index, could be same ball)
 • If B contains p, break to outer loop
 • If iteration threshold, quit

• V = sum of volumes
• V-estimate = V outer-loop-iterations / inner-loop-iterations
• Iteration threshold is linear in the number of balls
to get an estimate with epsilon relative accuracy with \(\frac{3}{4} \) probability
• We were the first to implement it (says BF)
 – constants matter 😊
Bringman Friedrich Algorithm

- Iteration threshold is linear in the number of balls to estimate with epsilon relative accuracy with $\frac{3}{4}$ probability
 - Iteration Threshold $O(N / \epsilon^2)$
 - Runtime $O(N d / \epsilon^2)$

BF-ApproxUnion relative error (ϵ) and required # samples per ball.

<table>
<thead>
<tr>
<th>ϵ</th>
<th>S/n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>40</td>
</tr>
<tr>
<td>.75</td>
<td>50</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>0.1</td>
<td>1.8×10^3</td>
</tr>
<tr>
<td>0.01</td>
<td>1.7×10^5</td>
</tr>
<tr>
<td>0.001</td>
<td>1.7×10^7</td>
</tr>
</tbody>
</table>

Here the oracles are assumed to be perfectly accurate; otherwise more samples are needed.
Neighbors

• Are two balls close enough to overlap?
 – If known, reduces time to check if point, or segment, is in another ball
 – Neighbors in brute force N^2 time in high d
 – This N^2 may be less than N/ϵ^2, number of samples needed in BF
 – All algs have $1/\epsilon^2$ trend, could be $>> N$
 – Trend
 suppose neighbors worth it for less than 1000 balls and $\epsilon = 0.1$
 1,000 balls \leftrightarrow 0.1 ϵ
 100,000 balls \leftrightarrow 0.01 ϵ
 10,000,000 balls \leftrightarrow 0.001 ϵ
 – and the constants matter 😊

N^2 isn’t a big deal compared to the other factors in high dimensions
Experimental Results: low-d

2-d Time to Achieve a Standard Deviation by Volume Estimation Method

3-d Time to Achieve a Standard Deviation by Volume Estimation Method

Implemented all the algorithms described above
Experimental Results: scaling by d, 2-20

Noisy trends. Need more replicates.

100 random balls
radius = distance to blue circle
BF is fast per sample, but each sample gives very little information

Line darts achieve a given level of accuracy faster
Conclusion

• Pre-finding overlapping balls is worth it if
 – High fidelity = relative error 0.01 or less
 – and << N balls overlap

• Times: (worst) BF-alg > point darts > line darts (best)

• Occluded cells with line samples is fast, and simpler than the alternatives
 – Need more experiments over more ball distribution types
 • Poisson-disks, or highly overlapping disks?

• In progress, extensions
 – more samples for larger balls & some overlaps analytically
 – selective sample locations & higher-dimensional samples?