Sampling Conditions for Clipping-free Voronoi Meshing by the VoroCrust Algorithm

Scott Mitchell1, Ahmed Abdelkader2, Ahmad Rushdi3, Mohamed Ebeida1, Ahmed Mahmoud3, John Owens3 and Chandrajit Bajaj4

1Sandia National Laboratories

2University of Maryland, College Park

3University of California, Davis

4University of Texas, Austin
Introduction

Voronoi Meshing

Given a bounded open set \mathcal{O} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally \textit{conform} to the bounding surface $\mathcal{M} = \partial \mathcal{O}$.
Introduction

Voronoi Meshing

Given a bounded open set \mathcal{O} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally \textit{conform} to the bounding surface $\mathcal{M} = \partial \mathcal{O}$.

- To the best of our knowledge, this stands as an open problem for non-convex domains.
Voronoi Meshing

Given a bounded open set \(\mathcal{O} \) in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to the bounding surface \(\mathcal{M} = \partial \mathcal{O} \).

- To the best of our knowledge, this stands as an open problem for non-convex domains.
- This is in contrast with tetrahedral meshing, which is well-established.
Introduction

Voronoi Meshing

Given a bounded open set \mathcal{O} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to the bounding surface $\mathcal{M} = \partial \mathcal{O}$.

- To the best of our knowledge, this stands as an open problem for non-convex domains.
- This is in contrast with tetrahedral meshing, which is well-established.
- The VoroCrust project developed the first solution to this problem.
Introduction

Voronoi Meshing

Given a bounded open set \mathcal{O} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to the bounding surface $\mathcal{M} = \partial \mathcal{O}$.

- To the best of our knowledge, this stands as an open problem for non-convex domains.
- This is in contrast with tetrahedral meshing, which is well-established.
- The VoroCrust project developed the first solution to this problem.
- In this talk, we focus on the subproblem of surface reconstruction, assuming a set of sample points from \mathcal{M} is given as input.
Surface Reconstruction for Voronoi Meshing

Given a set of sample points from a closed 2-manifold \mathcal{M} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to a surface mesh approximating \mathcal{M}. Typically, cells near the boundary are clipped, introducing defects. Power crust [Amenta et al.] produces such a decomposition. However, generators (poles) are restricted to lie near the medial axis of \mathcal{M}. Instead of the Voronoi diagram, it is based on the power diagram. Nonetheless, rich theory with strong approximation guarantees.
Surface Reconstruction for Voronoi Meshing

Given a set of sample points from a closed 2-manifold \mathcal{M} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to a surface mesh approximating \mathcal{M}.

- Typically, cells near the boundary are clipped, introducing defects.
Surface Reconstruction for Voronoi Meshing

Given a set of sample points from a closed 2-manifold \mathcal{M} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to a surface mesh approximating \mathcal{M}.

- Typically, cells near the boundary are clipped, introducing defects.
- Power crust [Amenta et al.] produces such a decomposition. However,
Problem Definition and State-of-the-art

Surface Reconstruction for Voronoi Meshing

Given a set of sample points from a closed 2-manifold M in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to a surface mesh approximating M.

- Typically, cells near the boundary are clipped, introducing defects.
- Power crust [Amenta et al.] produces such a decomposition. However,
 - Generators (poles) are restricted to lie near the medial axis of M.

Ahmed Abdelkader

VoroCrust Analysis @FWCG'17
Problem Definition and State-of-the-art

Surface Reconstruction for Voronoi Meshing

Given a set of sample points from a closed 2-manifold \mathcal{M} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to a surface mesh approximating \mathcal{M}.

- Typically, cells near the boundary are clipped, introducing defects.
- Power crust [Amenta et al.] produces such a decomposition. However,
 - Generators (poles) are restricted to lie near the medial axis of \mathcal{M}.
 - Instead of the Voronoi diagram, it is based on the power diagram.
Problem Definition and State-of-the-art

Surface Reconstruction for Voronoi Meshing

Given a set of sample points from a closed 2-manifold \mathcal{M} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally conform to a surface mesh approximating \mathcal{M}.

- Typically, cells near the boundary are clipped, introducing defects.
- Power crust [Amenta et al.] produces such a decomposition. However,
 - Generators (poles) are restricted to lie near the medial axis of \mathcal{M}.
 - Instead of the Voronoi diagram, it is based on the power diagram.
 - Nonetheless, rich theory with strong approximation guarantees.
VoroCrust Intuition - A 2D Example

(1) Weighted samples (balls)
VoroCrust Intuition - A 2D Example

1. Weighted samples (balls)
2. Collect intersection points

Ahmed Abdelkader
VoroCrust Analysis @FWCG'17
VoroCrust Intuition - A 2D Example

(1) Weighted samples (balls)

(2) Collect intersection points

(3) Compute Voronoi diagram
VoroCrust Intuition - A 2D Example

(1) Weighted samples (balls)

(2) Collect intersection points

(3) Compute Voronoi diagram

(4) Keep the separating facets
Power distance and cell

For a ball b centered at c with radius r, $\pi(b, x) = \|cx\|^2 - r^2$.

$V_b = \{ x \in \mathbb{R}^d \mid \pi(b, x) \leq \pi(b', x) \forall b' \in B \}$.

The Union of Balls and Its Dual Shape [Edelsbrunner]
Power distance and cell

For a ball b centered at c with radius r, $\pi(b, x) = \|cx\|^2 - r^2$.

$V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \leq \pi(b', x) \ \forall b' \in B\}$.

Weighted α-complex and α-shape

Define $\mathcal{K} = \text{Nerve}(\{V_b \cap b \mid b \in B\})$ and S as the underlying space $|\mathcal{K}|$.
The Union of Balls and Its Dual Shape [Edelsbrunner]

Power distance and cell

For a ball b centered at c with radius r, $\pi(b, x) = \|cx\|^2 - r^2$.

$V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \leq \pi(b', x) \forall b' \in B\}$.

Weighted α-complex and α-shape

Define $\mathcal{K} = Nerve(\{V_b \cap b \mid b \in B\})$ and S as the underlying space $|\mathcal{K}|$.

Figures from [Edelsbrunner]
The Union of Balls and Its Dual Shape [Edelsbrunner]

Power distance and cell

For a ball b centered at c with radius r, $\pi(b, x) = \|cx\|^2 - r^2$.

$$V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \leq \pi(b', x) \forall b' \in B\}.$$

Weighted α-complex and α-shape

Define $\mathcal{K} = \text{Nerve}(\{V_b \cap b \mid b \in B\})$ and S as the underlying space $|\mathcal{K}|$.

Homotopy-equivalence

The nerve theorem implies $S = |\mathcal{K}|$ has the same homotopy-type as $\bigcup B$.

Figures from [Edelsbrunner]
Local features size (lfs)

The local feature size at a point \(x \in M \) is its distance to the medial axis of \(M \).

Medial Axis
Figure from [Wolter]
ε-Sampling and Topological Thickening

Local features size (lfs)

The local feature size at a point \(x \in M \) is its distance to the medial axis of \(M \).

ε-sample

A set of points \(P \) on \(M \) such that \(\forall x \in M \exists p \in P \) s.t. \(\|px\| \leq \epsilon \cdot lfs(x) \).
ε-Sampling and Topological Thickening

Local features size (lfs)

The local feature size at a point \(x \in \mathcal{M} \) is its distance to the medial axis of \(\mathcal{M} \).

ε-sample

A set of points \(P \) on \(\mathcal{M} \) such that \(\forall x \in \mathcal{M} \exists p \in P \) s.t. \(\| px \| \leq \varepsilon \cdot \text{lfs}(x) \).

From balls to surfaces [Chazal, Lieutier]

Let \(P \) be an \(\varepsilon \)-sample of \(\mathcal{M} \), with \(\varepsilon < 1/160 \), and define \(b_p \) as the ball centered at \(p \in P \) with radius \(\alpha_p \cdot \text{lfs}(p) \), where \(1/20 < \alpha_p < 1/10 \). Then, \(\mathcal{M} \) is a deformation retraction of \(\bigcup b_p \).
Beyond Homeomorphism: Isotopic Equivalence

Torus: unknot vs. knot
Figures from [Wikipedia]
Beyond Homeomorphism: Isotopic Equivalence

Torus: unknot vs. knot
Figures from [Wikipedia]

A purely topological condition [Chazal, Cohen-Steiner]

Suppose that:
- \mathcal{M}' is homeomorphic to \mathcal{M},
- \mathcal{M}' is included in a topological thickening $\overline{\mathcal{M}}$ of \mathcal{M},
- \mathcal{M}' separates the sides of $\overline{\mathcal{M}}$.

Then, \mathcal{M}' is isotopic to \mathcal{M} in $\overline{\mathcal{M}}$.
Start with an \(\varepsilon \)-sample \(P \subset M \) with weights \((\delta \geq \varepsilon) \) defining the associated \(\delta \)-Ils balls \(B \).
Start with an ε-sample $P \subset \mathcal{M}$ with weights $(\delta \geq \varepsilon)$ defining the associated δ-lfs balls B.

Collect the corner points \mathcal{G} of $\bigcup B$ as a crude set of witnesses of the simplices in \mathcal{K}.
VoroCrust - The Abstract Algorithm

- Start with an ϵ-sample $P \subset M$ with weights $(\delta \geq \epsilon)$ defining the associated δ-lfs balls B.

- Collect the corner points G of $\cup B$ as a crude set of witnesses of the simplices in K.

- Compute the Voronoi diagram of G, $\text{Vor}(G)$.

Ahmed Abdelkader
VoroCrust Analysis @FWCG'17
Start with an ϵ-sample $P \subset \mathcal{M}$ with weights $(\delta \geq \epsilon)$ defining the associated δ-lfs balls B.

Collect the corner points G of $\bigcup B$ as a crude set of witnesses of the simplices in \mathcal{K}.

Compute the Voronoi diagram of G, $\text{Vor}(G)$.

Produce the surface approximation as the facets of $\text{Vor}(G)$ separating interior/exterior corners; we call this the VoroCrust of G (VC).
Start with an ϵ-sample $P \subset M$ with weights $(\delta \geq \epsilon)$ defining the associated δ-Ifs balls B.

Collect the corner points G of $\bigcup B$ as a crude set of witnesses of the simplices in \mathcal{K}.

Compute the Voronoi diagram of G, $\text{Vor}(G)$.

Produce the surface approximation as the facets of $\text{Vor}(G)$ separating interior/exterior corners; we call this the VoroCrust of G (VC).

Include in G more samples from the volume bounded by M to further decompose it.
VoroCrust - The Abstract Algorithm

- Start with an ϵ-sample $P \subset M$ with weights $(\delta \geq \epsilon)$ defining the associated δ-lfs balls B.
- Collect the corner points G of $\cup B$ as a crude set of witnesses of the simplices in K.
- Compute the Voronoi diagram of G, $\text{Vor}(G)$.
- Produce the surface approximation as the facets of $\text{Vor}(G)$ separating interior/exterior corners; we call this the VoroCrust of G (VC).
- Include in G more samples from the volume bounded by M to further decompose it.

Sandwich theorem

$$VC \subseteq S \subseteq \cup B.$$
VoroCrust - Ball Intersections

Ahmed Abdelkader

VoroCrust Analysis @FWCG'17
Disk Caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.
VoroCrust - Sampling Conditions for Disk Caps

Disk Caps
Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling Conditions
For constants $\epsilon \leq \delta$, we require an ϵ-sampling P, with associated balls of radii $r_i = \delta \cdot lfs(p_i)$ satisfying the following sparsity condition:

$$lfs(q) \geq lfs(p) \implies \|p - q\| \geq \epsilon \cdot lfs(p).$$

Ahmed Abdelkader
VoroCrust Analysis @FWCG'17
10 / 12
Disk Caps
Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling Conditions
For constants \(\epsilon \leq \delta \), we require an \(\epsilon \)-sampling \(P \), with associated balls of radii \(r_i = \delta \cdot lfs(p_i) \) satisfying the following sparsity condition:

\[
lfs(q) \geq lfs(p) \quad \Rightarrow \quad \|p - q\| \geq \epsilon \cdot lfs(p).
\]

Lemma
Taking \(\epsilon = 1/160 \) and \(\delta = 1/20 \), we get disk caps.
Announcements

- The VoroCrust software package is scheduled for release soon.
 - Successful implementation of more ideas than what this talk covers, e.g., sharp features, medial axis approximation, sizing estimation.
- Mohamed S. Ebeida (msebeid@sandia.gov) is the VoroCrust point-of-contact at Sandia National Labs (SNL).