A Large Scale Enterprise Level Systems of Systems Simulation Tool

Gio K. Kao, PhD & Steven M. Handy

gkkao@sandia.gov smhandy@sandia.gov

Sandia National Laboratories
Albuquerque, NM 87135

INFORMS 2009
San Diego, California
October 11-14, 2009
Outline

• Motivation

• The Simulation Tools

• Features

• Summary
Motivation

The beginning:

– Simulation capability motivated by the US Army’s need to analyze a brigade-level System of Systems (SoS)
 • SoS analysis is necessary to capture interrelationships in a complex large-scale logistics and sustainment environment
 • Analysis support provide to
 – US Army Program Manager Future Combat Systems Brigade Combat Team (PM FCS (BCT))
 • Analyzes focused on quantify impacts to changes in reliability, maintenance, and supply requirement and CONOPS

– SoSAT (System of Systems Analysis Toolset)
 • System of Systems State Model tool
 • Stochastic simulation tool
 • Advanced data visualization tools
 • Optimization tools

SoSAT provides modeling capabilities for sustainment and logistic analysis of a large system of systems
SoSAT Overview

- SoSAT provides analysis capability:
 - SoSAT is a SoS tool that can simulate detailed organizational operation over a defined mission or set of missions
 - Simulates any or all of a system of systems organizational structure
- Typical Problem Dimensions
 - Force structure consisting of over 1500 platforms organized at company level
 - Average of more than 200 elements per platform
 - Multiple day mission
 - Includes fuel, water, ammo utilization, storage and distribution
 - Includes spares and supplies optimization analyses
- Features
 - Element reliability failures, consumable depletion
 - Maintenance modeled with repair time distributions and any spares or services required for the repair
 - Supply reorder for consumables and spare inventories
 - Combat damage modeling
 - Network modeling
 - Prognostics and health management
 - External conditions and external references
System of Systems Analysis Toolset (SoSAT) Enterprise

The evolution:

- Capability motivated by the US Army's need to assess long-term life-cycle operations and support (O&S) metrics and cost beyond the brigade level

- Enterprise expansion (SoSAT Enterprise)
 - Built on top of SoSAT simulation
 - Expanded analysis scope to multiple brigades (entire fleet) and support infrastructure
 - Supply and repair-chain logistics simulation tool
 - Inventory management
 - O&S cost constraints
 - Resources and personnel workflow

- Enhanced simulation performance
 - New architecture coupling SoSAT
 - Multi-layered discrete event queue
 - Performance tuning
Enhanced Simulation Performance: The Event Queue

- **Combination of a Calendar Queue and Lazy Queue**
 - Adaptive: Adjusting number of buckets and width
 - Multi-layers to help with multi-modal distribution of events
 - Hand-tuned for performance

- **Dumping**
 - Only a single sorted list of *near* events
 - *Far* events are “dumped” to different data structures as time advances

- **Rebinning**
 - Adjust the number of buckets and barrels
 - Design to help handle skewed distributions (surges of events)
 - Barrels cover most events
 - Buckets sized to limit the number of sorted elements

Event Queue Data Structures

- Glacier
- Plug
- Cistern
- Barrels
- Buckets
- Cup
- Fired event

Time Covered

© Copyright 2006-2009, Sandia Corporation, All rights reserved.
SoSAT Enterprise Expansion

- **SoSAT Enterprise** provides analysts the capability to:
 - Support business decisions at a global logistics scale
 - Determine cost drivers for life-cycle analysis
 - Perform trade studies with various performance metrics
 - Assess impacts of architecture changes on performance metrics

- **Basic modeling features** include the simulation of:
 - Global logistics infrastructure including transportation
 - Support structure
 - Supply and repair chain management
 - Resource usage at multiple echelons
 - OEM capabilities with build models
 - Detailed task modeling

- **SoSAT Enterprise Problem Scale**
 - Multiple Brigades
 - Thousands of systems
 - Hundreds of sites worldwide
 - Hundreds of types of support equipment
 - Multiple personnel skill types
 - Simulate multiple years of operation

Arbitrary multi-echelon support structure
Global Enterprise Model

- Sites Definition
 - Resource Model
 - Workflow Model
 - OEM Build Capability
- Repair Chain Management
- Supply Chain Management
- Transportation Model
- Enterprise Cost

Simulation Parameters

<table>
<thead>
<tr>
<th>Settings</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Simulation Trials</td>
<td>1</td>
</tr>
<tr>
<td>Random Seed</td>
<td>11111</td>
</tr>
<tr>
<td>Simulation Duration (hr)</td>
<td>1000</td>
</tr>
<tr>
<td>Simulation Time Step (hr)</td>
<td>0.2</td>
</tr>
<tr>
<td>Details Interval</td>
<td>1</td>
</tr>
</tbody>
</table>

Options

- Enable Network
- Save Parts Inventory Details
- Save Consumables Inventory Details
- Enable Enterprise Model
- Save Summary Output
- Save Event Output
Sites Definitions

- **Types**
 - Base (repair, supply)
 - Supply Depot
 - Repair Depot
 - OEM (repair, supply, build)

- **Activation/Deactivation**
 - Initiation/Termination of sites

- **Shipping/Delivery Time**

- **Operational Hours**

- **Time Zone/Location**

- **Cost Multiplier**

Site Definitions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Activation Time</th>
<th>Deactivation Time</th>
<th>Supply Chain</th>
<th>Repair Chain</th>
<th>Schedule</th>
<th>Pay Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU Base</td>
<td>Base</td>
<td>1/1/2050 12:00 AM</td>
<td>1/1/2100 12:00 AM</td>
<td>Supply base-to</td>
<td>Repair base-to</td>
<td>Daily-24/7</td>
<td>1</td>
</tr>
<tr>
<td>OEM Electronic</td>
<td>OEM</td>
<td>1/1/2050 12:00 AM</td>
<td>1/1/2100 12:00 AM</td>
<td>Supply base-to</td>
<td>Repair base-to</td>
<td>Daily-24/7</td>
<td>1</td>
</tr>
<tr>
<td>OEM Mechanical</td>
<td>OEM</td>
<td>1/1/2050 12:00 AM</td>
<td>1/1/2100 12:00 AM</td>
<td>Supply base-to</td>
<td>Repair base-to</td>
<td>Daily-24/7</td>
<td>1</td>
</tr>
<tr>
<td>Repair Depot Electronic</td>
<td>Repair</td>
<td>1/1/2050 12:00 AM</td>
<td>1/1/2100 12:00 AM</td>
<td>Repair</td>
<td></td>
<td>Daily-24/7</td>
<td>1</td>
</tr>
<tr>
<td>Repair Depot Mechanical</td>
<td>Repair</td>
<td>1/1/2050 12:00 AM</td>
<td>1/1/2100 12:00 AM</td>
<td>Repair</td>
<td></td>
<td>Daily-24/7</td>
<td>1</td>
</tr>
<tr>
<td>Supply Depot Electronic Supply</td>
<td>Supply</td>
<td>1/1/2050 12:00 AM</td>
<td>1/1/2100 12:00 AM</td>
<td>Supply</td>
<td>Supply</td>
<td>Daily-24/7</td>
<td>1</td>
</tr>
</tbody>
</table>

© Copyright 2006-2009, Sandia Corporation, All rights reserved.
Sites: Resource Model

• Use of resources to perform work
 – Build, supply, repair, maintenance
 – Schedule/shift dependent

• Support Equipment (Hourly)
 – Lifecycle with replacement
 – Scheduled/Unscheduled*

• Maintenance
 • Operational Age*, Times Used, Calendar Hour

• Personnel
 – Employee (Salaried)
 – Contractor (Hourly)
Sites: Workflow Model

- Workflows (sequences of tasks)
 - build (parts/consumables), supply, repair, maintenance

- Task Details
 - Time distribution
 - Resource(s) needs
 - Penalty
 - Cost
Sites: OEM Build Model

- Parts and consumables can be built/generated at OEM(s)
- Depleted inventory → generates build order for parts/consumables
- Batch quantity
- Detailed build workflows
- Excess parts/consumables are stored at OEM for future supply requisitions
Repair Chain Management

- System Failure Requiring Spares
 - Flow of failed parts defined by the repair chain
 - Repair levels (probability)
 - Disposal (system level), Test Serviceable, Site Levels
 - Repair workflow(s)
- Repaired Parts
 - Re-enter system via supply chain (based on originating platform)
- Multi-echelon repair chains
Supply Chain Management

- **Supply flow**
 - Spare parts and consumables
 - Demand generated from Systems

- **Inventory control**
 - Standard (s,S) re-order strategy
 - Stock levels, overstock rule
 - Supply type workflow
 - Requisition processing, Issue Spares, Restock, Order placement, Return Item

- **Flexible, multi-echelon supply chains**
- Transportation of parts & consumables
- Transport activities for items occur:
 - From system to site
 - Between sites
 - From site to system
- Transportation parameters
 - Delivery windows
 - Cargo type/volume/priorities
 - Shipping time (distribution)
 - Time zone/location zone
- Transportation Rules
 1. Cheapest cost within defined standard
 2. Shortest transport time
Dynamic Simulation Changes

- **Model attributes can be changed over time**
 - **Inventory Rules**
 - Modification of re-order strategy
 - Capability to model surges in demand, changes in operating strategy, etc.
 - **Activation/Deactivation of Sites**
 - Sites can be interrupted/disabling transportation
 - Capability to model attacks, transpiration cut-offs, worker strikes, closing of a plant, etc.
 - **Resource Changes**
 - Modification to the type and number of support equipment and personnel at a site.
 - Capability to model worker strikes, deployment of resources, site specific scenarios, resource constraints, etc.
 - **Inventory Changes**
 - Inventory levels of specific parts can be add or removed between sites
 - Capability to model shortages, surges, deployment, etc.
Enterprise Cost

- **Support Equipment Cost**
 - Initial SE Invest
 - SE Usage Cost
 - SE Maintenance
 - Replace SE Invest
- **Parts Related Cost**
 - Initial Part Invest
 - Initial Consumable Invest
 - Replenish Part & Consumable
- **Labor Cost**
 - Task Cost
 - Employee Pay
 - Contractor Pay
- **Transportation & Storage Cost**
 - Inventory Storage
 - In-Bound Transport
 - Out-Bound Transport

Enterprise Cost By Site for 5 Sites

- SE Initial: 45.32%
- SE Replacement: 0.75%
- SE Scheduled Maintenance: 0.15%
- SE Unscheduled Maintenance: 0.12%
- SE Usage: 12.42%
- Initial Part Invest: 5.12%
- Initial Consumable Invest: 6.78%
- Replenish Part & Consumable: 4.60%
- Task Cost: 3.08%
- Employee Pay: 0.75%
- Contractor Pay: 0.15%
- Inventory Storage: 1.26%
- In-Bound Transport: 1.00%
- Out-Bound Transport: 1.00%

Total: 707,547.00
Results

Multiple Systems Roll-up Availability vs. Time

Individual Systems Details

Sustainment - Provider Services Details
Summary

• **High fidelity simulation**
 – Repair and supply chain simulation
 – Resource contentions
 – Multi-echelon distribution structure
 – Dynamic simulation changes
 – Detail workflow modeling

• **Efficiency**
 – Custom novel architecture
 – Hybrid of an adaptive calendar queue and lazy queue

• **Future Development**
 – Modeling overhaul/recap/reset of systems
 – Higher fidelity for repair and supply chain (SRU level)
 – Integrated optimization capabilities
Acknowledgments

• **Management Team:**
 – Bruce M. Thompson, Alan S. Nanco, Dennis J. Anderson

• **Development and Testing Team:**
 – Darryl J. Melander, Hai D. Le, Scott A. Mitchell, PhD
 – Jean-Paul Watson, PhD, David Strip, PhD
 – Jesse P. Hatcher, Jason Groves (Intera)

• **Analysis Team**
 – Steven M. Handy, Kimberly M. Welch, Matthew J. Hoffman

• **US Army PM FCS(BCT)**