On the Appropriateness of Commodity Operating Systems for Large-Scale, Balanced Computing Systems

Ron Brightwell Rolf Riesen
Sandia National Laboratories
Albuquerque, New Mexico
{rbbrigh,rolf}@sandia.gov

Arthur B. Maccabe
University of New Mexico
Albuquerque, New Mexico
maccabe@cs.unm.edu
Outline

• Background
• Target architecture and applications
• Experience with Linux
• Summary
• Future directions
Sandia/UNM System Software Research

- Intel Paragon
 - 1,890 compute nodes
 - 3,680 i860 cpu’s
 - 143/184 GFLOPS
 - 175 MB/sec network

- SUNMOS lightweight kernel
 - High performance compute node OS for distributed memory MPP’s
 - Deliver as much performance as possible to apps
 - Small footprint
 - Started in January 1991 on the nCUBE-2 to explore new message passing schemes and high-performance I/O
 - Ported to Intel Paragon in Spring of 1993

- Intel ASCI Red
 - 4,576 compute nodes
 - 9,472 Pentium II cpu’s
 - 2.38/3.21 TFLOPS
 - 400 MB/sec network

- Puma lightweight kernel
 - Multiprocess support
 - Modularized (kernel, PCT)
 - Developed on nCUBE-2 in 1993
 - Ported to Intel Paragon in 1995
 - Ported to Intel TFLOPS in 1996 (Cougar)
 - Portals 1.0
 - User/Kernel managed buffers
 - Portals 2.0
 - Avoid buffering and mem copies
Cplant™/Antarctica

- 1792+ Compaq DS10L Slates
 - 466MHz EV6, 256 MB RAM
- 590 Compaq XP1000s
 - 500 MHz EV6, 256 MB RAM
- Myrinet 33MHz 64bit LANai 7.x and 9.x
- Myrinet Mesh64 switches
- Classified, unclassified, open, and development network heads
Cplant™/Antarctica

Ross/Antarctica
#48 Top 500
996.9 GFLOPS on 1780 nodes
Target Architecture

- Distributed memory, message passing systems
- Partition model of resources
 - Compute nodes
 - Small number of CPUs (<4)
 - Diskless
 - High performance network
 - Service nodes
 - Disk I/O nodes
 - Network I/O nodes
- Balanced
 - Ratio of peak processor speed to peak network bandwidth
 - Ratio of peak processor speed to peak memory bandwidth
Target Applications

• Resource constrained
 – Can consume all of at least one resource (memory, memory bandwidth, processing, network, etc.)
 – *All* resources are precious
• A single run may consume the entire system for days
• Primary concern is application execution time
Why Linux for Cplant™?

• Free (speech & beer)
• Large developer community
• Kernel modules
 – No need to reboot during development
 – Supports partition model
• Supported on several platforms
• Familiarity with Linux
 – Ported Linux 2.0.13 to ASCI/Red nodes in 1997
 • No network though
• Port of Cougar infeasible for schedule
Results

• Cplant™ is now open source
• Large developer community is a wash
 – Most developers not focused on HPC and scaling issues
 – Extreme Linux helped
 – Extreme Linux isn’t very extreme (see Linux Magazine)
 – Other markets starting to help (eg. databases)
• Modules
 – Big help in developing the networking stack
• Portals over any network device
 – Myrinet
 – skbufo
 – Portals over IP
 – Portals over IP in kernel
• Cplant™ runs on Alpha, x86, IA-64
• Linux changes too often to really be familiar
Other Observations

• Reliability
 – Linux likely hasn’t been the cause of any machine interrupts
 • But we can’t really be sure
 – Main selling point of Linux for the server market
• Application development environment more extensive
 – Compilers, debuggers, tools
• Lots of stuff we don’t have to worry about
 – Device drivers: Ethernet, Serial
 – BIOS’s
 – Hardware bugs
• Linux works OK for Cplant™ and commodity-based clusters
Technical Issues

• Predictability – avoid work unrelated to the computation
 – Linux on Alpha takes 1000 interrupts per second - to keep time
 • Problems when we tried to play with this
 – Daemons: init, inetd, ipciod
 – Kernel threads: kswapd, kflushd, kupdate, kpid
 – Seen as much as a 10x variability in execution time
 – Inappropriate resource management strategies

• VM system
 – Adverse impact on message passing
 – No (usable) physically contiguous memory mechanism
 – Must explicitly pin memory pages
 – Must maintain page tables for NIC
 – Fighting the page cache
 • How much memory is there?
Technical Issues (cont’d)

• Requires a filesystem
 – fork/exec model
 – Not appropriate for diskless compute nodes where filesystem is all at user-level

• Complexity
 – We haven’t done anything substantial with Linux because it’s not easy (and moves too fast)
 – Virtual node mode added to Cougar by two relatively inexperienced kernel developers in six months
Social Issues

• Kernel development moves too fast
 – Significant resources needed to keep up and maintain a production system
• Distributions and development environments also change frequently
 – Tool vendors have trouble keeping up (ask Etnus)
 – Last two bugs on Cplant™ were with glibc from RedHat
• Linus changed out the VM system in the middle of the 2.4 kernels!
 – 2.4.9 – van Riel VM system
 – 2.4.10 – Arcangeli VM system
 • 150+ patches to the van Riel VM system
• Server vs. multimedia desktop
 – Neither one is HPC
Social Issues (cont’d)

• Forced to take the good with the bad
 – Want NFS v3, don’t want OOM killer
• Fairly fixed set of requirements
 – Linux doesn’t allow us to concentrate on those
• Staying focused
 – Linux community not addressing HPC issues
 – No real market drivers
Trends Are Helping Linux

<table>
<thead>
<tr>
<th>Machine</th>
<th>Memory per Node</th>
<th>TLB Entries</th>
<th>CPU Speed</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paragon</td>
<td>16 MB</td>
<td>4</td>
<td>50 MHz</td>
<td>200 MB/s</td>
</tr>
<tr>
<td>ASCI Red</td>
<td>256 MB</td>
<td>64</td>
<td>333 MHz</td>
<td>400 MB/s</td>
</tr>
<tr>
<td>Cplant™</td>
<td>1 GB</td>
<td>128?</td>
<td>466 MHz</td>
<td>100 MB/s</td>
</tr>
</tbody>
</table>
Summary

• Linux works fine for Cplant™ and commodity clusters
 – CPU performance is acceptable for cluster balance factors
• Likely performance issues for large-scale platforms with a reasonable balance ratios
• Community is a mixed blessing
• Linux will likely catch up, but we have large-scale systems now
Future Directions

• Currently performing a direct comparison between Cougar and Linux on ASCI Red hardware
 – Finally did a network driver for ASCI Red network
 – Should allow us to have a better understanding of Linux performance and scalability on a balanced machine

• Working on an approach for a lightweight kernel that leverages Linux for hardware support