LSAView: A Tool for Visual Exploration of Latent Semantic Modeling

Patricia Crossno, Daniel Dunlavy, Timothy Shead

Sandia National Laboratories
Overview

• Latent Semantic Analysis
• Motivation
• Analysis of Algorithmic Choices
• LSAView
• Case Studies
 • Rank Selection
 • Singular Value Scaling
• Conclusions
Latent Semantic Analysis

Text corpus \[\rightarrow \] low rank approximation \[\rightarrow \] Concept space

- Information retrieval
- Term relationships
- Clustering

\[
A \approx U_k \Sigma_k V_k^T
\]
Document Similarity Graphs

Document similarity matrix = $V_k \Sigma_k^\alpha V_k^T$

Use Cosine Similarities

$e_{ij}(k) = \frac{\langle v_k^i \Sigma_k, v_k^j \Sigma_k \rangle}{\|v_k^i \Sigma_k\|_2 \|v_k^j \Sigma_k\|_2}$

Document similarity graph
- Each document is a vertex
- Each row defines an edge
Motivation:
Algorithmic Parameter Choices Impact Models

Which rank to use?
Analysis of Algorithmic Choices

Focus on impacts from:
- Rank (number of concepts)
 - Find sweet spot between extremes
- Similarity computation
 - Singular value scaling
- How to visualize model impacts?
 - Conceptual groupings
 - Document layout
 - Changes in link strength between documents
 - Significance of changes in edge weights
 - Large changes not necessarily significant
 - Statistical inference tests
LSAView

- Compares models
- Explores impacts of parameter choices
- Uses statistical inference to highlight model differences
- Built using open source VTK/Titan Informatics Toolkit

Views
- Graph
- Matrix
- You Are Here
- Small Multiples
- Document
Rank Selection Case Study

• DUC data
 • 2003 Document Understanding Conference (DUC)
 • 298 newswire documents for summarization evaluation
 • Documents in 30 clusters
 • ~10 documents per cluster on a particular topic or event
 • http://www-nlpir.nist.gov/projects/duc/data.html

• Rank = k (SVD truncation)

\[A \approx U_k \Sigma_k V_k^T \]

• Iterative Approach
 • Identify range of potential ranks – Small Multiples View
 • Compare ranks – Graph, Matrix, and Data Table Views
 • Validate rank – Document View
Small Multiples: Narrow Range of Ranks

Ranks $k = 20, 50, 80, 11, 140$

Ranks $k = 28, 29, 30, 31, 32$
Two-sample t Statistics

- Identify anomalous edge weights between 2 graphs
- Most significant differences in bright green

$$t_{ij}^{(2)} = \frac{\bar{e}_{ij}(k_1, \alpha, n_1) - \bar{e}_{ij}(k_2, \alpha, n_2)}{\sqrt{\frac{(s_{ij}(k_1, \alpha, n_1))^2}{n_1} + \frac{(s_{ij}(k_2, \alpha, n_2))^2}{n_2}}}$$
Anomalous Links to Document 297
Manual Inspection

- Document 297 – Chinese policy on separatists
- Cluster 1 topic – trial of 3 Chinese separatists
- Cluster 2 topic – Russian policy on Chechnyan separatists
- Policy theme best match for 297, conclude Rank 30 best
Comparison to Automated Methods

- LSAView
 - Rank 30
 - Variance 40.59

- Leave-1-Out Cross Validation
 - Rank 140
 - Variance 80.72

- 95% Variance
 - Rank 214
 - Variance 95.12

- 20-group (fold) Cross Validation
 - Rank 229
 - Variance 97.27

- Automated rank selection methods select ranks
 - Robust to noise
 - Accounting for variance in data

- LSAView selects on impact to text analysis tasks
Singular Value Scaling Case Study

• TechTC data
 • Subset of TechTC-100 Test Collection
 • 150 html documents partitioned into 2 clusters
 • http://techtc.cs.technion.ac.il/techtc100/techtc100.html

• Singular Value Scaling = α

$$e_{ij}(k, \alpha) = \frac{\langle v_k^i \Sigma_k^{\alpha/2}, v_k^j \Sigma_k^{\alpha/2} \rangle}{\|v_k^i \Sigma_k^{\alpha/2}\|_2 \|v_k^j \Sigma_k^{\alpha/2}\|_2}$$

• Complicated by rank selection
• Inspect scaled singular values for α vs. k
Inspect Singular Values Scaled by α

- Original singular values correspond to $\alpha = 2$
- For all α, values trend toward 0 for $k < 45$
- For $k > 45$, inverted scalings amplify noise
Small Multiples $k > 45$ vs $k < 45$

- Matrix views show edge weights
- $k = 100$ little difference in weights
- $k = 20$ good clustering
TECHTC $k = 6$, $\alpha = 1$ vs. $\alpha = -1$

- After further analysis, select $k=6$
- Both α have two distinct clusters
- Slightly stronger links in $\alpha = -1$
- Both scalings perform well
TECHTC True Cluster Assignments
Conclusions

- Illustrated how LSAView used to understand LSA models
 - Seeding of other models (graph models)
 - Impact on document clustering task
- Key departure from previous work
 - Produces significantly different rank selection than automated approaches
 - Focuses on impact to text analysis tasks over variance

Work Funded by Laboratory Directed Research & Development (LDRD) program at Sandia National Laboratories
\[A_k = U_k \Sigma_k V_k^T \]

\[e_{ij}(k) = \frac{\langle v_k^i \Sigma_k, v_k^j \Sigma_k \rangle}{\| v_k^i \Sigma_k \|_2 \| v_k^j \Sigma_k \|_2} \]

\[e_{ij}(k, \alpha) = \frac{\langle v_k^i \Sigma_k^{\alpha/2}, v_k^j \Sigma_k^{\alpha/2} \rangle}{\| v_k^i \Sigma_k^{\alpha/2} \|_2 \| v_k^j \Sigma_k^{\alpha/2} \|_2} \]

\[\bar{e}_{ij}(k, \alpha, n) = \frac{1}{n+1} \sum_{r=k-n/2}^{k+n/2} e_{ij}(r, \alpha) \]

\[s_{ij}(k, \alpha, n) = \sqrt{\frac{1}{n} \sum_{r=k-n/2}^{k+n/2} \left(e_{ij}(r, \alpha) - \bar{e}_{ij}(k, \alpha, n) \right)^2} \]
\[t_{ij}^{(1)} = \frac{\bar{e}_{ij}(k, \alpha, n) - e_{ij}(k, \alpha)}{s_{ij}(k, \alpha, n) / \sqrt{n + 1}} \]

\[t_{ij}^{(2)} = \frac{\bar{e}_{ij}(k_1, \alpha, n_1) - \bar{e}_{ij}(k_2, \alpha, n_2)}{\sqrt{\frac{[s_{ij}(k_1, \alpha, n_1)]^2}{n_1} + \frac{[s_{ij}(k_2, \alpha, n_2)]^2}{n_2}}} \]