Improved Data Partitioning by Nested Dissection with Applications to Information Retrieval

SIAM CSC09
10/29/2009

Michael Wolf, Erik Boman, Cédric Chevalier
Sparse Matrix Partitioning Motivation

• Sparse matrix-vector multiplication (SpMV) is common kernel in many numerical computations
 – Iterative methods for solving linear systems
 – PageRank computation
 – ...
• Need to make parallel SpMV kernel as fast as possible
Parallel Sparse Matrix-Vector Multiplication

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 y_5 \\
 y_6 \\
 y_7 \\
 y_8 \\
\end{bmatrix}
\begin{bmatrix}
 1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 & 2 \\
 0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 & 4 \\
 0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 & 3 \\
 0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 & 1 \\
 4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 & 4 \\
 0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 & 2 \\
 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 1 \\
 2 \\
 4 \\
 3 \\
 1 \\
 4 \\
 2 \\
 1 \\
\end{bmatrix}
\]

\[
y = Ax
\]

- Partition matrix nonzeros
- Partition vectors
Objective

• Ideally we minimize total run-time
• Settle for easier objective
 – Work balanced
 – Minimize total communication volume
• Can partition matrices in different ways
 – 1D
 – 2D
• Can model problem in different ways
 – Graph
 – Bipartite graph
 – Hypergraph
Parallel Matrix-Vector Multiplication

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
y_6 \\
y_7 \\
y_8
\end{bmatrix}
=
\begin{bmatrix}
1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\
0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 \\
4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 \\
0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
4 \\
3 \\
1 \\
4 \\
2 \\
1
\end{bmatrix}
\]

\[y = Ax\]

• Alternative way of visualizing partitioning
Parallel SpMV Communication

- x_j sent to remote processes that have nonzeros in column j

- Partial inner-products sent to process that owns vector element y_i
1D Partitioning

- Each process assigned nonzeros for set of columns
- Each process assigned nonzeros for set of rows
When 1D Partitioning is Inadequate

For any 1D bisection of nxn arrowhead matrix:
- \(\text{nnz} = 3n-2 \)
- Volume \(\approx (3/4)n \)

“Arrowhead” matrix
n=12
\(\text{nnz}=34 \) (18,16)
volume = 9
When 1D Partitioning is Inadequate

2D partitioning
• O(k) volume partitioning possible

“Arrowhead” matrix
n=12
nnz=34 (16,18)
volume = 2
1D is Inadequate

- c-73: nonlinear optimization (Schenk)
 - UF sparse matrix collection
 - n=169,422 nnz=1,279,274
1D is Inadequate

• asic680ks: Xyce circuit simulation (Sandia)
 - n=682,712 nnz=2,329,176
2D Partitioning

• More flexibility in partitioning
• No particular part for given row or column
• More general sets of nonzeros assigned parts
• Several methods of 2D partitioning
 – Fine-grain hypergraph, Mondriaan, …

• Fine-grain hypergraph
• Graph model for symmetric 2D partitioning
• Nested dissection symmetric partitioning method
Fine-Grain (FG) Hypergraph Model

- Catalyurek and Aykanat (2001)
- Nonzeros represented by vertices in hypergraph
Fine-Grain Hypergraph Model

- Rows represented by hyperedges
- Hyperedge - set of one or more vertices
Fine-Grain Hypergraph Model

- Columns represented by hyperedges
Fine-Grain Hypergraph Model

- $2n$ hyperedges
Fine-Grain Hypergraph Model

- Partition vertices into k equal sets
- For $k=2$
 - Volume = number of hyperedges cut
- Minimum volume partitioning when optimally solved
- Larger NP-hard problem than 1D

$k=2$, volume = cut = 2
Graph Model for Symmetric 2D Partitioning

- Exact model of communication for symmetric 2D partitioning
- Given matrix A with symmetric nz structure
- Symmetric partition
 - $a(i,j)$ and $a(j,i)$ assigned same part
 - Input and output vectors have same distribution
- Corresponding graph $G(V,E)$
 - Vertices correspond to vector elements
 - Edges correspond to off-diagonal nonzeros
Graph Model for Symmetric 2D Partitioning

- Corresponding graph $G(V,E)$
 - Vertices correspond to vector elements
 - Edges correspond to off-diagonal nonzeros
Graph Model for Symmetric 2D Partitioning

- Symmetric 2D partitioning
 - Partition both V and E
 - Gives partitioning of both matrix and vectors
Communication in Graph Model

- Communication is assigned to vertices
- Vertex incurs communication iff incident edge is in different part
- Want small vertex separator -- $S = \{V_8\}$
- For bisection, volume = $2|S|$
Nested Dissection Partitioning - Bisection

- Suppose A is structurally symmetric
- Let $G(V,E)$ be graph of A
- Find small, balanced separator S
 - Yields vertex partitioning $V = (V_0,V_1,S)$
- Partition the edges such that
 - $E_0 = \{\text{edges incident to a vertex in } V_0\}$
 - $E_1 = \{\text{edges incident to a vertex in } V_1\}$
Nested Dissection Partitioning - Bisection

- Vertices in S and corresponding edges
 - Can be assigned to either part
 - Can use flexibility to maintain balance

- Communication Volume = 2*|S|
 - Regardless of S partitioning
 - |S| in each phase
Nested Dissection (ND) Partitioning Method

- Recursive bisection to partition into >2 parts
- Use nested dissection!
Extension to Nonsymmetric Matrices

- Bipartite graph gives exact model of communication volume
 - Trifunovic and Knottenbelt (2006)
- Apply nested dissection method to A' (adjacency matrix for bipartite graph)
 - Use same algorithm as for symmetric case

$$A' = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$$
Initial Numerical Experiments

- Structurally symmetric matrices
- $k = 4, 16, 64$ parts using
 - 1D hypergraph partitioning
 - Fine-grain hypergraph partitioning (2D)
 - Good quality partitions but slow
 - Nested dissection partitioning (2D)
- Hypergraph partitioning for all methods
 - Zoltan (Sandia) with PaToH (Catalyurek)
 - Allows “fair” comparison between methods
- Vertex separators derived from edge separators
 - MatchBox (Purdue: Pothen, et al.)
- Heuristic used to partition separators
Communication Volume - Symmetric Matrices

Test matrices from Rob Bisseling (Utrecht)
Runtimes of Partitioning Methods

- **cage10**
 - $k=4$: 1D, Fine-grain, Nested dissection
 - $k=16$: 1D, Fine-grain, Nested dissection
 - $k=64$: 1D, Fine-grain, Nested dissection

- **finan512**
 - $k=4$: 1D, Fine-grain, Nested dissection
 - $k=16$: 1D, Fine-grain, Nested dissection
 - $k=64$: 1D, Fine-grain, Nested dissection

- **bcsstk32**
 - $k=4$: 1D, Fine-grain, Nested dissection
 - $k=16$: 1D, Fine-grain, Nested dissection
 - $k=64$: 1D, Fine-grain, Nested dissection

- **bcsstk30**
 - $k=4$: 1D, Fine-grain, Nested dissection
 - $k=16$: 1D, Fine-grain, Nested dissection
 - $k=64$: 1D, Fine-grain, Nested dissection
Communication Volume: 1D is Inadequate

c-73: nonlinear optimization

- **1D**
- **Fine-grain**
- **Nested dissection**

<table>
<thead>
<tr>
<th>k</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>
Communication Volume: 1D is Inadequate

asic680ks: Xyce circuit simulation

![Bar graph showing the communication volume for 1D, Fine-grain, and Nested dissection at different values of k (k=4, k=16, k=64)].
Improving Separator Partitioning

- Flexibility in how we partition separator vertices and separator-separator edges
- Original implementation used simple heuristic
• Phase 2: partition separator vertices and edges
• Solve a second, much smaller partitioning problem
 – Fixed vertices/edges (1 vertex for each part)
 – Fine-grain hypergraph partitioning
Summary of Improved (2-Phase) Method

• Use heuristic to reduce partitioning problem (phase 1)
 – Heuristic = general ND partitioning algorithm
 – Heuristic is optimal for bisection

• Apply fine-grain hypergraph partitioning with fixed vertices to much smaller problem (phase 2)
 – One fixed vertex per part

• Smaller problem means fine-grain hypergraph will do excellent job of partitioning
 – Fast (relative to FG partitioning of original graph)
 – Better relative solution
Improved Method - Communication Volume

- **cage10**
 - k=16
 - k=64
 - k=256

- **finan512**
 - k=16
 - k=64
 - k=256

- **bcsstk32**
 - k=16
 - k=64
 - k=256

- **bcsstk30**
 - k=16
 - k=64
 - k=256

The graphs show the communication volume in words for different sizes of k.
Information Retrieval Matrices

• Results for 2 types of matrices
 – Web-link matrices
 • R-MAT (Chakrabarti, et al.)
 • Stanford_Berkeley (Kamvar)
 – Term-by-term (Dunlavy, Sandia)

• 5 different partitioning methods
 – 1D hypergraph partitioning
 – Fine-grain hypergraph partitioning (2D)
 – Nested dissection partitioning (2D)
 • Original heuristic implementation
 • Improved implementation (2-phase method)
 • Improved implementation with SCOTCH (LaBRI, INRIA)
Vertex Separator from $SCOTCH$

- Originally vertex separators obtained from edge separators
 - 1D hypergraph partitioning
 - Smaller separators perhaps possible using nested dissection algorithms

$SCOTCH$ (LaBRI, INRIA)
- Multilevel graph/sparse matrix ordering algorithm
- Attempts to find smallest balanced vertex separator
- Used to reorder matrices to reduce fill
- Used Zoltan interface to $SCOTCH$

- Pro: focus on finding small vertex separators
- Con: does not naturally balance nonzeros
Web-link Results

- Communication volume relative to 1D* partitioning
 - Average for rmat18, rmat19, Stanford_Berkeley

** load imbalance for ND SCOTCH (k=256), FG failure to converge (RMAT19)
• Communication volume relative to 1D partitioning
 – Average for tbtlinux, tbtspock, tbtsandia2

** load imbalance for ND SCOTCH (k=64, k=256)
Summary

• New 2D matrix partitioning algorithm
• ND matrix partitioning algorithm
 – ND used in new context
 – Good trade off between communication volume and partitioning time
 • Communication volume (comparable to fine-grain)
 • Partitioning time (comparable to 1D)
 – Extensions for nonsymmetric matrices
 – Method shows promise for information retrieval
• Work with Erik Boman, et al. to implement 2D partitioning algorithms in Trilinos
 – Isorropia, package for CSC
Selection of Related Papers

Nested Dissection Partitioning:

2D Partitioning:
