Lecture 1: Introduction to Engineering Optimization

Kevin Carlberg

Stanford University

July 27, 2009
Goals

- An introduction to mathematical optimization, which is quite useful for many applications spanning a large number of fields
 - Design (automotive, aerospace, biomechanical)
 - Control
 - Signal processing
 - Communications
 - Circuit design

- Cool and useful applications of the tools learned so far: can we use finite element modeling to design an aircraft or to detect internal damage in a structure?
References

Course information

- **Instructor**: Kevin Carlberg (carlberg@stanford.edu)
- **Lectures**: There will be five lectures covering
 1. Introduction to Engineering Optimization
 2. Unconstrained Optimization
 3. Constrained Optimization
 4. Optimization with PDE constraints
- **Assignments**: There will be a few minor homework and in-class assignments
1 Motivation

2 Example

3 Problem Classification
 - Convex v. non-convex
 - Continuous v. discrete
 - Constrained v. unconstrained
 - Single-objective v. multi-objective

4 Modeling
Why optimization?

- Mathematical optimization: make something the best it can possibly be.

 maximize objective by choosing variables subject to constraints

- Are you optimizing right now?
 objective: learning; variables: actions; constraints: physical limitations

- Perhaps more realistically,
 objective: comfort
Applications

- Physics. Nature chooses the state that minimizes an energy functional (variational principle).
- Transportation problems. Minimize cost by choosing routes to transport goods between warehouses and outlets.
- Portfolio optimization. Minimize risk by choosing allocation of capital among some assets.
- Data fitting. Choose a model that best fits observed data.
Applications with PDE constraints

- Design optimization

- Model predictive control Figure from R. Findeisen and F. Allgower, “An Introduction to Nonlinear Model Predictive Control,” 21st Benelux Meeting on Systems and Control, 2002.

- Structural damage detection
Brachistochrone Problem History

- One of the first problems posed in the calculus of variations.
- Galileo considered the problem in 1638, but his answer was incorrect.
- Johann Bernoulli posed the problem in 1696 to a group of elite mathematicians:

 I, Johann Bernoulli... hope to gain the gratitude of the whole scientific community by placing before the finest mathematicians of our time a problem which will test their methods and the strength of their intellect. If someone communicates to me the solution of the proposed problem, I shall publicly declare him worthy of praise.

- Newton solved the problem the very next day, but proclaimed “I do not love to be dunned [pestered] and teased by foreigners about mathematical things.”
Brachistochrone Problem (homework)

- **Problem:** *Find the frictionless path that minimizes the time for a particle to slide from rest under the influence of gravity between two points A and B separated by vertical height \(h \) and horizontal length \(b \).*

- Conservation of energy: \(\frac{1}{2}mv^2 + mgh = C \)

- Beltrami Identity: for \(I(y) = \int_{x_A}^{x_B} f(y(x)) \, dx \), the stationary point solution \(y^* \) characterized by \(\delta I(y^*) = 0 \) satisfies \(f - y' \frac{\partial f}{\partial y'} = C \).
Numerical Solution

- Although the analytic solution is available, an approximate solution can be computed using numerical optimization techniques.

Figure: Evolution of the solution using a gradient-based algorithm
Numerical Solution (for different h)
Mathematical Optimization

Mathematical optimization: the minimization of a function subject to constraints on the variables. “Standard form”:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad c_i(x) = 0, \quad i = 1, \ldots, n_e \\
& \quad d_j(x) \geq 0, \quad j = 1, \ldots, n_i
\end{align*}
\]

- **Variables**: \(x \in \mathbb{R}^n \)
- **Objective function**: \(f : \mathbb{R}^n \rightarrow \mathbb{R} \)
- **Equality constraint functions**: \(c_i : \mathbb{R}^n \rightarrow \mathbb{R} \)
- **Inequality constraint functions**: \(d_j : \mathbb{R}^n \rightarrow \mathbb{R} \)

Feasible set: \(\mathcal{D} = \{ x \in \mathbb{R}^n \mid c_i(x) = 0, \quad d_j(x) \geq 0 \} \)

Different optimization algorithms are appropriate for different problem types.
Convex v. non-convex

- **Convex problems**: Convex objective and constraint functions: \(g(\alpha x + \beta y) \leq \alpha g(x) + \beta g(y) \)

- **LP** (linear programming): linear objective and constraints. Common in management, finance, economics.

- **QP** (quadratic programming): quadratic objective, linear constraints. Often arise as algorithm subproblems.

- **NLP** (nonlinear programming): the objective or some constraints are general nonlinear functions. Common in the physical sciences.
Convex v. non-convex significance

- Convex: a *unique* optimum (local solution = global solution)
- NLP: A global optimum is desired, but can be difficult to find

![Convex vs. non-convex example](image)

Figure: Local and global solutions for a nonlinear objective function.

- Local optimization algorithms can be used to find the global optimum (from different starting points) for NLPs
Continuous v. discrete optimization

Discrete: The feasible set is finite
- Always non-convex
- Many problems are NP-hard
- Sub-types: combinatorial optimization, integer programming
- Example: How many warehouses should we build?

Continuous: The feasible set is uncountably infinite
- Continuous problems are often much easier to solve because derivative information can be exploited
- Example: How thick should airplane wing skin be?

Discrete problems are often reformulated as a sequence of continuous problems (e.g. branch and bound methods)
Constrained v. unconstrained

- Unconstrained problems ($n_e = n_i = 0$) are usually easier to solve
- Constrained problems are thus often reformulated as a sequence of unconstrained problems (e.g. penalty methods)
Single-objective v. Multi-objective optimization

- We may want to optimize two competing objectives f_1 and f_2 (e.g. manufacturing cost and performance)
- **Pareto frontier**: set of candidate solutions among which no solution is better than any other solution in both objectives

- These problems are often solved using evolutionary algorithms
Modeling

- **Modeling**: the process of identifying the objective, variables, and constraints for a given problem

The more abstract the problem, the more difficult modeling becomes.
Example (Homework)

- You live in a house with two other housemates and two vacancies. You are trying to choose two of your twenty mutual friends (who all want to live there) to fill the vacancies.

- Model the problem as a mathematical optimization problem, and categorize the problem as constrained/unconstrained, continuous/discrete, convex/NLP, and single/multi-objective.
Rest of the week

- Unconstrained optimization
- Constrained optimization
- PDE-constrained optimization