Statistical Techniques for the Characterization of Partially Observed Epidemics

Jaideep Ray1, Cosmin Safta1, Karen Cheng2 and David Crary2

1Sandia National Laboratories, Livermore CA, \\
2Applied Research Associates, Inc, Arlington, VA

\textbf{Acknowledgements:} The work was funded by DTRA, under contract HDTRA1-09-C-0034

Ms. Nancy Nurthen is the DTRA PM.
Ms. Karen Cheng at ARA, is the Principal Investigator.
Contact Info: kcheng@ara.com and jairay@somnet.sandia.gov

SAND2010-7770C
Problem Statement

• **Aim:** To develop statistical techniques to characterize ongoing epidemics from partial biosurveillance data
 – Estimate # of index cases, time of infection, or infection rate
 – Do so with minimal data i.e., early in the outbreak
 • Data is a time-series of counts of ICD-9 codes
 – Quantify the confidence in the estimates

• **Motivation**
 – To provide initial conditions for disease models, to be used for planning medical interventions, resource allocation etc.
 • Disease models can be agent-based ones too
 – Can also be applied to historical epidemics, with case-counts as the data
 • Useful for obtaining disease model parameters for agent-based simulators.
Why Are Current Biosurveillance Methods Inapplicable?

- Current *biosurveillance* methods focus on detection
 - Based on anomaly detection
 - No model of the background
 - Or filtered out and this “disturbs” the detection

 “7 day moving average filters suppress exactly the short scale features that were the intended object of study”

- Current *characterization* methods for epidemics are used retrospectively
 - The epidemics are *fully* observed, not *partially* observed
 - The identity of the disease is known
 - The data consists of counts of people who have been diagnosed with the disease
 - It is *not* biosurveillance data with all its confounding issues
Difficulties with Using Biosurveillance Data

- Biosurveillance data (ICD-9 counts, OTC sales etc) is complex
 - Weekly & seasonal cycles; non-stationary structure
 - Symptom, not diagnosis, data (for timeliness)
- Characterization of epidemics with biosurveillance data requires:
 - Ability to model the background/endemic morbidity in real time
 - Detect the start of the epidemic
 - Extract the epidemic from the data
 - By “subtracting” the background

ILI ICD-9 stream from Miami (background / endemic morbidity)
Technical Challenges

• The components of the procedure are:
 – Detection of an outbreak from time-series data
 – Extraction of the outbreak from the background
 • Data for detection and extraction are ICD-9 streams with both the background/endemic and outbreak signal
 – Characterization of the outbreak (index cases, infection rate …)
• Biosurveillance data is partial, so …
 – All estimates are uncertain, and
 – The uncertainties need to be quantified
• Figures of merit
 – Delay between infection and detection
 – Cleanliness of the separation of background and epidemic
 – Closeness of inferred and true nature of outbreak
Detection of the Outbreak

• Based on sequential data assimilation using a Kalman Filter (KF)
 – Uses a simple model for daily ICD-9 counts (case-count)
 – Case-count model contains
 • A daily mean level and a cyclic weekly term
 • A quadratic, fitted to 4-week window of daily levels, for one-step-ahead predictions
 – KF also produce a measure of uncertainty in model predictions
 • KF covariance matrix
• Results in a model for the background morbidity
• Detection strategy:
 – Predict one-day ahead using quadratic model
 – If observation is greater than threshold, alarm (2-3 Std. Dev.)
 – Else, assimilate observation to obtain new mean level
Example with Synthetic Data

- **Simulated anthrax outbreak**
 - Small atmospheric release over a spatially distributed population (3 Million people)
 - 1125 index cases, with a range of doses
 - Includes visit delay
- **Background data for Miami (ICD-9 for ILI)**
 - Anthrax outbreak injected in on Day 130
- **KF starts fitting background model from Day 0**
- **Question:** How good is the background model
 - i.e. how many days to detection?

![Diagram showing the timeline of an anthrax outbreak and the detection process](image-url)
Detection Performance

- Based on Kalman Filters
 - Starts on Day 0
 - Creates a model of endemic ILI disease
- Detection:
 - One-day-ahead model predictions
 - Compared with observations
 - Significant deviation indicates an anomaly – detection!
 - In this case, detection took 5 days
 - Incubation: 3-4 days

Start: 130 Alarm: 135
Extraction of the Epidemic

• The “background” model can be “frozen” on the day of alarm
 – A quadratic is fitted to mean levels to determine local slope for forward projection
 – Weekly cycles derived previous data
 – KF formalism used for forward projection

• Questions:
 – How close are the model predictions to observations?

• Test this without the injected outbreak.

• Caveat: Model predictions will degrade in time

• Predictions up to 2 weeks ahead look good
 • But can this be used to extract the epidemic?
Extraction of the Epidemic Cont.

- Plot the difference between observations and predictions by frozen background model
- Estimate of the anthrax outbreak
 - Pretty good for 15 days
- However, it is a partial estimate
 - Extends only to the number of days of observations
- Can the partial anthrax outbreak be used for characterizing the attack?

Day 0 is day of release
Day 5 is day of detection
Characterization of the Anthrax Epidemic

- **Characterization:**
 - Estimation of the number of index cases, time of release, an average dose, and some parameters of the visit-delay model

- **Hypothesis:**
 - An anthrax incubation period model + a visit delay model can reproduce the epidemic curve
 - The quantities of interest are all parameters/inputs into this epidemic model
 - So given a partial epidemic curve, fitting an anthrax model should reveal the necessary model parameters

- **Questions:**
 - How much data is needed to estimate these parameters?
 - i.e., is less than 15 days of (good, normal background extracted) data sufficient?
 - What is the level of uncertainty in parameter estimates, as a function of (quantity of) data?
Bayesian Techniques to Solve the Problem

- The estimation is posed as a Bayesian inverse problem
 - Predicated on the extracted outbreak data
- Allows one to use bounds / prior beliefs regarding the value of the parameters
 - We assumed that index cases ranged between 100-10,000
- Solved using an adaptive Markov chain Monte Carlo sampler
 - All parameters estimated as probability density functions (PDF)
 - Used autocorrelation analysis to determine “convergence” of the Markov chain
Estimates of the Number of Index Cases

- Estimates of the number of index cases (in red).
- True figure in blue

Number of index cases bounded in 7 days;
Bounded to 2250 people out of original population of 3 Million;
Accurate to 20% after 9 days, post detection.
Incubation period is 3-4 days so will not get earlier than that.
Application to a Communicable Disease

• The technique can be applied to a communicable disease
 – Need to estimate infection rate (along with “usual” parameters)

• Assumptions for communicable diseases model
 – The infection rate rises & then falls smoothly in time
 – Index cases are a small fraction of the total number of victims

• A lightweight model can be created and fitted to data
 – The model of epidemic evolution is statistical (not AB)
 – Is used with MCMC, as before
 – Allows inferences to be drawn as PDFs

• Demonstrate with synthetic data
 – Simulate a plague epidemic using an AB model
A Communicable Disease Example

• The simulated plague epidemic
 – Includes visit-delay
 – Incubation is NOT dose dependent
• 100 index cases
 – Epidemic dies out in 40 days
 – 1500 victims, total
• Aim:
 – Estimate the total size of the epidemic
 – Also, the infection rate curve
 – Compare with the “true” figures from the simulation

- Red points: People turning symptomatic, daily (observed)
- Blue line: people being infected, daily (unobservable)
Estimation of the Final Epidemic Size

- The estimate improves (shorter error bars) with time
- Easier for large outbreaks
Conclusions

• Techniques appear promising to construct and integrate automated detect-and-characterize technique for epidemics
 – Working off biosurveillance data
 – Provides information on the particular/ongoing outbreak

• Potential use – in crisis management and planning, resource allocation
 – Parameter estimation capability ideal for providing the input parameters into an agent-based model
 • Index Cases, Time of Infection, infection rate

• Non-communicable diseases are easier than communicable ones
 – Small anthrax can be characterized well with 7-10 days of data, post-detection; plague takes longer
 – Large attacks are very easy