A minimal subspace rotation approach for obtaining stable & accurate low-order projection-based reduced order models for nonlinear compressible flow

I. Tezaur1, M. Balajewicz2

1 Quantitative Modeling & Analysis Department, Sandia National Laboratories
2 Aerospace Engineering Department, University of Illinois Urbana-Champaign

ECCOMAS 2016 Crete, Greece June 6-10, 2016
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation
4. Applications
 • High angle of attack laminar airfoil
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation
4. Applications
 • High angle of attack laminar airfoil
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Motivation

Targeted application: compressible fluid flow (e.g., captive-carry)
Motivation

Targeted application: compressible fluid flow (e.g., captive-carry)

- Majority of fluid MOR approaches in the literature are for *incompressible* flow.
Motivation

Targeted application: compressible fluid flow (e.g., captive-carry)

- Majority of fluid MOR approaches in the literature are for **incompressible** flow.
- There has been some on MOR for **compressible flows**.
Motivation

Targeted application: compressible fluid flow (e.g., captive-carry)

- Majority of fluid MOR approaches in the literature are for **incompressible** flow.
- There has been some on MOR for **compressible** flows.
 - **Energy-based inner products:** Rowley *et al.*, 2004 (isentropic); Barone *et al.*, 2007 (linear); Serre *et al.*, 2012 (linear); Kalashnikova *et al.*, 2014 (nonlinear).
Motivation

Targeted application: compressible fluid flow (e.g., captive-carry)

- Majority of fluid MOR approaches in the literature are for incompressible flow.
- There has been some on MOR for compressible flows.
 - Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et al., 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
 - GNAT method/Petrov-Galerkin projection: Carlberg et al., 2014 (nonlinear).
Motivation

Targeted application: compressible fluid flow (e.g., captive-carry)

- Majority of fluid MOR approaches in the literature are for incompressible flow.
- There has been some on MOR for compressible flows.
 - **Energy-based inner products:** Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et al., 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
 - **GNAT method/Petrov-Galerkin projection:** Carlberg et al., 2014 (nonlinear).

MOR for **nonlinear, compressible** fluid flows is still in its infancy!
Projection-based model order reduction

High-Fidelity CFD Simulations:
- Snapshot 1
- Snapshot 2
- ... (Snapshot K)

Step 1:
- **Fluid Modal Decomposition (POD):**
 \[u \approx \sum_{k=1}^{n} a_k(t) U_k(x) \]

Step 2:
- **Galerkin Projection of Fluid PDEs:**
 \[(U_j, \dot{u} + \nabla \cdot F(u)) = 0 \]

POD/Galerkin Method to Model Order Reduction

Snapshot matrix: \(X = (x^1, ..., x^K) \in \mathbb{R}^{N \times K} \)

SVD: \(X = U \Sigma V^T \)

Truncation: \(U \leftarrow (U_1, ..., U_n) = U(:, 1:n) \)

“Small” ROM ODE System:
\[\dot{a}_k = f(a_1, ..., a_n) \]

POD/Galerkin Method to Model Order Reduction

- \(N \) = # of dofs in high-fidelity simulation
- \(K \) = # of snapshots
- \(n \) = # of dofs in ROM
 \(n \ll N, n \ll K \)
Projection-based model order reduction

Governing equations

- 3D compressible Navier-Stokes equations in *primitive specific volume form*:

\[
\begin{align*}
\frac{\partial \zeta}{\partial t} + \zeta \frac{\partial u_j}{\partial x} - \zeta u_{j,j} &= 0 \\
\frac{\partial u_i}{\partial t} + u_i \frac{\partial u_j}{\partial x} + \zeta p_i - \frac{1}{Re} \zeta \tau_{ij,j} &= 0 \\
\frac{\partial p}{\partial t} + u_j p_j + \gamma u_j \frac{\partial p}{\partial x} - \left(\frac{\gamma}{PrRe} \right) \left(\kappa(p\zeta)_j \right)_j - \left(\frac{\gamma - 1}{Re} \right) u_{i,j} \tau_{ij} &= 0
\end{align*}
\]
Projection-based model order reduction

Governing equations

- 3D compressible Navier-Stokes equations in *primitive specific volume form*:

\[
\begin{align*}
\zeta, t + \zeta, j u_j - \zeta u_{j,j} &= 0 \\
u_i, t + u_{i,j} u_j + \zeta p, i - \frac{1}{Re} \zeta \tau_{ij,j} &= 0 \\
p, t + u_j p, j + \gamma u_{j,j} p - \left(\frac{\gamma}{Pr Re} \right) (\kappa(p \zeta), j), j - \left(\frac{\gamma - 1}{Re} \right) u_{i,j} \tau_{ij} &= 0
\end{align*}
\]

(PDEs)

- Spectral discretization \(q(x, t) \approx \sum_{i=1}^{n} a_i(t) U_i(x) \) + Galerkin projection applied to (1) yields a system of \(n \) *coupled quadratic ODEs*:

\[
\frac{d\alpha}{dt} = C + L\alpha + \left[\alpha^T Q^{(1)} \alpha + \alpha^T Q^{(2)} \alpha + \cdots + \alpha^T Q^{(n)} \alpha \right]^T
\]

(ROM)

where \(C \in \mathbb{R}^n, L \in \mathbb{R}^{n \times n} \) and \(Q^{(i)} \in \mathbb{R}^{n \times n} \) for all \(i = 1, \ldots, n \).
Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates *truncation*.
Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates **truncation**.

- POD is, by definition and design, biased towards the **large, energy producing** scales of the flow (i.e., modes with large POD eigenvalues).
Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates *truncation*.

- POD is, by definition and design, biased towards the *large, energy producing* scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible form a *data compression* point of view (i.e., small POD eigenvalues) but are crucial for the *dynamical equations*.
Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates **truncation**.

- POD is, by definition and design, biased towards the **large, energy producing** scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a **data compression** point of view (i.e., small POD eigenvalues) but are crucial for the **dynamical equations**.
- For fluid flow applications, higher-order modes are associated with energy **dissipation** \Rightarrow low-dimensional ROMs are often **inaccurate** and sometimes **unstable**.
Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates truncation.

- POD is, by definition and design, biased towards the large, energy producing scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a data compression point of view (i.e., small POD eigenvalues) but are crucial for the dynamical equations.
- For fluid flow applications, higher-order modes are associated with energy dissipation \implies low-dimensional ROMs are often inaccurate and sometimes unstable.

For a ROM to be stable and accurate, the truncated/unresolved subspace must be accounted for.
Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates \textit{truncation}.

- POD is, by definition and design, biased towards the \textit{large, energy producing} scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a \textit{data compression} point of view (i.e., small POD eigenvalues) but are crucial for the \textit{dynamical equations}.
- For fluid flow applications, higher-order modes are associated with energy \textit{dissipation} \implies low-dimensional ROMs are often \textit{inaccurate} and sometimes \textit{unstable}.

For a ROM to be stable and accurate, the \textit{truncated/unresolved subspace} must be accounted for.

\begin{itemize}
 \item \textbf{Turbulence Modeling} (traditional approach)
 \item \textbf{Subspace Rotation} (our approach)
\end{itemize}
Outline

1. Motivation
2. Projection-based model order reduction
3. **Accounting for modal truncation**
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation
4. Applications
 • High angle of attack laminar airfoil
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Accounting for modal truncation

Traditional linear eddy-viscosity approach

- Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

\[
\frac{d\mathbf{a}}{dt} = \mathbf{C} + L\mathbf{a} + \left[a^T Q^{(1)} a + a^T Q^{(2)} a + \cdots + a^T Q^{(n)} a \right]^T
\]
Accounting for modal truncation

Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

\[
\frac{da}{dt} = C + (L + L_v)a + [a^T Q^{(1)}a + a^T Q^{(2)}a + \cdots + a^T Q^{(n)}a]^T
\]
Accounting for modal truncation

Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

\[
\frac{da}{dt} = C + (L + L_\nu) a + [a^T Q^{(1)} a + a^T Q^{(2)} a + \cdots + a^T Q^{(n)} a]^T
\]

• \(L_\nu\) is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of \(L + L_\nu\) (for stability).
Accounting for modal truncation

Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

\[
\frac{da}{dt} = C + (L + L_v) a + [a^T Q^{(1)} a + a^T Q^{(2)} a + \cdots + a^T Q^{(n)} a]^T
\]

• \(L_v\) is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of \(L + L_v\) (for stability).

• **Disadvantages of this approach:**
Accounting for modal truncation

Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

\[
\frac{da}{dt} = C + (L + L_\nu)a + \left[a^T Q^{(1)} a + a^T Q^{(2)} a + \cdots + a^T Q^{(n)} a \right]^T
\]

• \(L_\nu \) is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of \(L + L_\nu \) (for stability).

• **Disadvantages of this approach:**
 1. Additional term destroys *consistency* between ROM and Navier-Stokes equations.
Accounting for modal truncation

Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

\[
\frac{da}{dt} = C + (L + L_\nu)a + \left[a^T Q^{(1)} a + a^T Q^{(2)} a + \cdots + a^T Q^{(n)} a \right]^T
\]

• \(L_\nu \) is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of \(L + L_\nu \) (for stability).

• Disadvantages of this approach:
 1. Additional term destroys \textit{consistency} between ROM and Navier-Stokes equations.
 2. Calibration is necessary to derive optimal \(L_\nu \) and optimal value is \textit{flow dependent}.
Accounting for modal truncation

Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

\[
\frac{da}{dt} = C + (L + L_\nu) a + [a^T Q^{(1)} a + a^T Q^{(2)} a + \cdots + a^T Q^{(n)} a]^T
\]

• \(L_\nu\) is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of \(L + L_\nu\) (for stability).

• Disadvantages of this approach:
 1. Additional term destroys consistency between ROM and Navier-Stokes equations.
 2. Calibration is necessary to derive optimal \(L_\nu\) and optimal value is flow dependent.
 3. Inherently a linear model \(\rightarrow\) cannot be expected to perform well for all classes of problems (e.g., nonlinear).
Outline

1. Motivation
2. Projection-based model order reduction
3. **Accounting for modal truncation**
 - Traditional linear eddy-viscosity approach
 - *New proposed approach via subspace rotation*
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Accounting for modal truncation

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation \textit{a priori} by “rotating” the projection subspace into a more dissipative regime
Accounting for modal truncation

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation \textit{a priori} by “rotating” the projection subspace into a more dissipative regime.

Illustrative example

- **Standard approach**: retain only the most energetic POD modes, i.e., $U_1, U_2, U_3, U_4, ...$
- **Proposed approach**: choose some higher order basis modes to increase dissipation, i.e., $U_1, U_2, U_6, U_8, ...$
Accounting for modal truncation

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation \emph{a priori} by “rotating” the projection subspace into a more dissipative regime.

Illustrative example

- \textbf{Standard approach:} retain only the most energetic POD modes, i.e., $U_1, U_2, U_3, U_4, \ldots$
- \textbf{Proposed approach:} choose some higher order basis modes to increase dissipation, i.e., $U_1, U_2, U_6, U_8, \ldots$

- \textbf{More generally:} approximate the solution using a linear superposition of $n + p$ (with $p > 0$) most energetic modes:

$$
\bar{U}_i = \sum_{j=1}^{n+p} X_{ij} U_j, \quad i = 1, \ldots, n,
$$

where $X \in \mathbb{R}^{(n+p)\times n}$ is an orthonormal ($X^T X = I_{n\times n}$) “rotation” matrix.

\begin{equation}
(3)
\end{equation}
Accounting for modal truncation

Goals of proposed new approach

Find X such that:
1. New modes \tilde{U} remain good approximations of the flow.
2. New modes produce stable and accurate ROMs.
Accounting for modal truncation

Goals of proposed new approach

Find X such that:

1. New modes \tilde{U} remain *good approximations* of the flow.
2. New modes produce *stable* and *accurate* ROMs.

• We formulate and solve a *constrained optimization problem* for X:

$$\text{minimize}_{X \in \mathcal{V}_{(n+p),n}} f(X)$$

subject to $g(X, L) = 0$

where $\mathcal{V}_{(n+p),n} \in \{X \in \mathbb{R}^{(n+p) \times n}: X^T X = I_n, p > 0\}$ is the *Stiefel manifold*.
Accounting for modal truncation

Goals of proposed new approach

Find X such that:

1. New modes \tilde{U} remain *good approximations* of the flow.
2. New modes produce *stable* and *accurate* ROMs.

• We formulate and solve a *constrained optimization problem* for X:

$$\begin{align*}
\text{minimize} & \quad f(X) \\
\text{subject to} & \quad g(X, L) = 0
\end{align*}$$

where $\mathcal{V}_{(n+p),n} \in \{X \in \mathbb{R}^{(n+p) \times n} : X^T X = I_n, p > 0\}$ is the *Stiefel manifold*.

• Once X is found, the result is a system of the form (2) with:

$$Q^{(i)}_{jk} \leftarrow \sum_{s,q,r=1}^{n+p} X_{si} Q^{(s)}_{qr} X_{qr} X_{rk}, \quad L \leftarrow X^T L X, \quad C \leftarrow X^T C^*$$
Accounting for modal truncation

Objective function

\[
\begin{align*}
\text{minimize}_{X \in V_{(n+p),n}} & \quad f(X) \\
\text{subject to} & \quad g(X, L) = 0
\end{align*}
\]

(5)

• We have considered two objectives \(f(X) \) in (5):
Accounting for modal truncation

Objective function

\[
\begin{align*}
\text{minimize}_{X \in V_{(n+p),n}} & \quad f(X) \\
\text{subject to} & \quad g(X, L) = 0
\end{align*}
\] (5)

• We have considered two objectives \(f(X) \) in (5):

 • Minimize \textit{subspace rotation}

\[
\begin{align*}
f(X) &= \|X - I_{(n+p),n}\|_F = -\text{tr}(X^T I_{(n+p) \times n})
\end{align*}
\] (6)
Accounting for modal truncation

Objective function

\[
\begin{align*}
\text{minimize} & \quad f(\mathbf{X}) \\
\text{subject to} & \quad g(\mathbf{X}, \mathbf{L}) = 0
\end{align*}
\]

(5)

• We have considered two objectives \(f(\mathbf{X}) \) in (5):

 • Minimize \textit{subspace rotation}

\[
f(\mathbf{X}) = \| \mathbf{X} - \mathbf{I}_{(n+p),n} \|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p)\times n})
\]

(6)

• Maximize resolved \textit{turbulent kinetic energy (TKE)}

\[
f(\mathbf{X}) = -\| \mathbf{\Sigma} - \mathbf{X} \mathbf{X}^T \mathbf{\Sigma} \|_F
\]

(7)
Accounting for modal truncation

Objective function

\[\text{minimize}_{X \in V_{(n+p),n}} f(X) \]
\[\text{subject to } g(X, L) = 0 \]

- We have considered two objectives \(f(X) \) in (5):
 - Minimize \textit{subspace rotation}
 \[f(X) = \| X - I_{(n+p),n} \|_F = -\text{tr}(X^T I_{(n+p)\times n}) \] (6)
 - Maximize resolved \textit{turbulent kinetic energy (TKE)}
 \[f(X) = -\| \Sigma - XX^T \Sigma \|_F \] (7)

- TKE objective (7) comes from earlier work (Balajewicz et al., 2013) involving stabilization of incompressible flow ROMs
 - POD modes associated with low KE are important \textit{dynamically} even though they contribute little to overall energy of the fluid flow.
Accounting for modal truncation

Objective function

\[
\begin{align*}
\text{minimize} & \quad f(X) \\
\text{subject to} & \quad g(X, L) = 0
\end{align*}
\]

(5)

• We have considered two objectives \(f(X) \) in (5):

 • Minimize *subspace rotation*

\[
f(X) = \|X - I_{(n+p),n}\|_F = -\text{tr}(X^T I_{(n+p)\times n})
\]

(6)

• Maximize resolved *turbulent kinetic energy (TKE)*

\[
f(X) = -\|\Sigma - XX^T \Sigma\|_F
\]

(7)

• Numerical experiments reveal objective (6) produces better results than objective (7) for compressible flow.
Accounting for modal truncation

Constraint

\[
\begin{align*}
\text{minimize}_{X \in \mathcal{V}_{(n+p),n}} & \quad f(X) \\
\text{subject to} & \quad g(X, L) = 0
\end{align*}
\]

(5)

- We use the traditional \textit{linear eddy-viscosity closure model ansatz} for the constraint \(g(X, L) = 0\) in (5):

\[
g(X, L) = \text{tr}(X^T LX) - \eta
\]

(8)
Accounting for modal truncation

Constraint

\[
\begin{align*}
\text{minimize}_{\mathbf{X} \in V_{(n+p),n}} & \quad f(\mathbf{X}) \\
\text{subject to} & \quad g(\mathbf{X}, \mathbf{L}) = 0
\end{align*}
\] (5)

- We use the traditional \textit{linear eddy-viscosity closure model ansatz} for the constraint \(g(\mathbf{X}, \mathbf{L}) = 0\) in (5):

\[
g(\mathbf{X}, \mathbf{L}) = \text{tr}(\mathbf{X}^T \mathbf{L} \mathbf{X}) - \eta
\] (8)

- Specifically, constraint (8) involves overall balance between \textit{linear energy production} and \textit{dissipation}.
 - \(\eta\) = proxy for the balance between linear energy production and energy dissipation.
Accounting for modal truncation

Constraint

\[
\begin{align*}
\text{minimize}_{X \in V_{(n+p),n}} & \quad f(X) \\
\text{subject to} & \quad g(X, L) = 0
\end{align*}
\]

(5)

- We use the traditional *linear eddy-viscosity closure model ansatz* for the constraint \(g(X, L) = 0 \) in (5):

\[
g(X, L) = \text{tr}(X^T LX) - \eta
\]

(8)

- Specifically, constraint (8) involves overall balance between *linear energy production* and *dissipation*.
 - \(\eta \) = proxy for the balance between linear energy production and energy dissipation.
- Constraint comes from property that *averaged total power* \((= \text{tr}(X^T LX) + \text{energy transfer}) \) has to vanish.
Accounting for modal truncation

Minimal subspace rotation: trace minimization on Stiefel manifold

\[
\begin{align*}
\text{minimize } & \quad x \in \mathcal{V}_{(n+p),n} - \text{tr}(X^T I_{(n+p)\times n}) \\
\text{subject to } & \quad \text{tr}(X^T LX) = \eta
\end{align*}
\]

(9)

- \(\eta \in \mathbb{R} \): proxy for the balance between linear energy production and energy dissipation (calculated iteratively using modal energy).

- \(\mathcal{V}_{(n+p),n} \in \{ X \in \mathbb{R}^{(n+p)\times n} : X^T X = I_n, p > 0 \} \) is the *Stiefel manifold*.

- Equation (9) is solved efficiently offline using the method of Lagrange multipliers (*Manopt MATLAB* toolbox).

- See (Balajewicz, Tezaur, Dowell, 2016) and Appendix slide for Algorithm.
Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an \textit{a priori consistent} formulation of the eddy-viscosity turbulence modeling approach.
Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains *consistency* between ROM and Navier-Stokes equations → no additional turbulence terms required.
Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains *consistency* between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

• Advantages of proposed approach:
 1. Retains *consistency* between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.
Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

• **Advantages of proposed approach:**
 1. Retains *consistency* between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.

• **Disadvantages of proposed approach:**
Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- **Advantages of proposed approach:**
 1. Retains *consistency* between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.

- **Disadvantages of proposed approach:**
 1. Off-line calibration of free parameter η is required.
Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- **Advantages of proposed approach:**
 1. Retains *consistency* between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.

- **Disadvantages of proposed approach:**
 1. Off-line calibration of free parameter η is required.
 2. Stability cannot be proven like for incompressible case.
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation
4. Applications
 • High angle of attack laminar airfoil
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Applications

High angle of attack laminar airfoil

2D flow around an inclined NACA0012 airfoil at Mach 0.7, Re = 500, Pr = 0.72, AOA = 20° \(\Rightarrow n = 4 \) ROM (86% snapshot energy).

Figure 1: Contours of velocity magnitude at time of final snapshot.
Applications

High angle of attack laminar airfoil

- **Minimizing subspace rotation:**

\[
f(X) = \left\| X - I_{(n+p),n} \right\|_F = -\text{tr}(X^TI_{(n+p)\times n})
\]

Figure 2: (a) evolution of modal energy, (b) phase plot of first and second temporal basis \(a_1(t)\) and \(a_2(t)\), (c) illustration of stabilizing rotation showing that rotation is small:

\[
\frac{\left\| X - I_{(n+p),n} \right\|_F}{n} = 0.083, \quad X \approx I_{(n+p),n}
\]
Applications

High angle of attack laminar airfoil

- **Minimizing subspace rotation:**

\[
f(X) = \| X - I_{(n+p),n} \|_F = -\text{tr}(X^T I_{(n+p)\times n})
\]

Figure 3: High angle of attack laminar airfoil contours of velocity magnitude at time of final snapshot.
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - **Low Reynolds number channel driven cavity**
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Applications

Channel driven cavity: low Reynolds number case

Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72
⇒ n = 4 ROM (91% snapshot energy).

Figure 4: Domain and mesh for viscous channel driven cavity problem.
Applications

Channel driven cavity: low Reynolds number case

- **Minimizing subspace rotation**:

\[
f(X) = \|X - I_{(n+p),n}\|_F = -\text{tr}(X^T I_{(n+p)\times n})
\]

Figure 5: (a) evolution of modal energy, (b) phase plot of first and second temporal basis \(a_1(t)\) and \(a_2(t)\), (c) illustration of stabilizing rotation showing that rotation is small:
\[
\frac{\|X - I_{(n+p),n}\|_F}{n} = 0.188, \ X \approx I_{(n+p),n}
\]
Applications

Channel driven cavity: low Reynolds number case

- Minimizing subspace rotation:

\[f(X) = \| X - I_{(n+p),n} \|_F = -\text{tr}(X^T I_{(n+p)\times n}) \]

Figure 6: Pressure power spectral density (PSD) at location \(x = (2, -1) \); stabilized ROM minimizes subspace rotation.
Applications

Channel driven cavity: low Reynolds number case

- Maximizing resolved TKE:

\[f(X) = -||\Sigma - XX^T\Sigma||_F \]

Figure 7: Pressure power spectral density (PSD) at location \(x = (2, -1) \); stabilized ROM maximizes resolved TKE.
Applications

Channel driven cavity: low Reynolds number case

- *Minimizing subspace rotation:*

\[
f(X) = \| X - I_{(n+p),n} \|_F = -\text{tr}(X^T I_{(n+p)\times n})
\]

Figure 8: Channel driven cavity $\text{Re} \approx 1500$ contours of u-velocity at time of final snapshot.
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation
4. Applications
 • High angle of attack laminar airfoil
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Applications

Channel driven cavity: moderate Reynolds number case

Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72
⇒ n = 20 ROM (71.8% snapshot energy).

Figure 9: Domain and mesh for viscous channel driven cavity problem.
Applications

Channel driven cavity: moderate Reynolds number case

- **Minimizing subspace rotation:**

\[f(X) = \| X - I_{(n+p)\times n} \|_F = -\text{tr}(X^T I_{(n+p)\times n}) \]

Figure 10: (a) evolution of modal energy, (b) illustration of stabilizing rotation showing that rotation is small: \(\frac{\| X - I_{(n+p),n} \|_F}{n} = 0.038, \ X \approx I_{(n+p),n} \)
Applications

Channel driven cavity: moderate Reynolds number case

- *Minimizing subspace rotation:*

\[
f(X) = \|X - I_{(n+p)\times n}\|_F = -\text{tr}(X^T I_{(n+p)\times n})
\]

Figure 11: Pressure cross PSD of \(p(x_1, t)\) and \(p(x_2, t)\) where \(x_1 = (2, -0.5)\), \(x_2 = (0, -0.5)\)

Power and phase lag at fundamental frequency, and first two super harmonics are predicted accurately using the fine-tuned ROM (\(\Delta = \text{stabilized ROM}\), \(\square = \text{DNS}\))
Applications

Channel driven cavity: moderate Reynolds number case

- **Minimizing subspace rotation:**

\[
 f(X) = \|X - I_{(n+p),n}\|_F = -\text{tr}(X^T I_{(n+p)\times n})
\]

Figure 12: Channel driven cavity \(\text{Re} \approx 5500 \) contours of \(u \)-velocity at time of final snapshot.
Applications

CPU times (CPU-hours) for offline and online computations*

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Airfoil</th>
<th>Low Re Cavity</th>
<th>Moderate Re Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM # of DOF</td>
<td>360,000</td>
<td>288,250</td>
<td>243,750</td>
</tr>
<tr>
<td>Time-integration of FOM</td>
<td>7.8 hrs</td>
<td>72 hrs</td>
<td>179 hrs</td>
</tr>
<tr>
<td>Basis construction (size (n + p) ROM)</td>
<td>0.16 hrs</td>
<td>0.88 hrs</td>
<td>3.44 hrs</td>
</tr>
<tr>
<td>Galerkin projection (size (n + p) ROM)</td>
<td>0.74 hrs</td>
<td>5.44 hrs</td>
<td>14.8 hrs</td>
</tr>
<tr>
<td>Stabilization</td>
<td>28 sec</td>
<td>14 sec</td>
<td>170 sec</td>
</tr>
<tr>
<td>ROM # of DOF</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Time-integration of ROM</td>
<td>0.31 sec</td>
<td>0.16 sec</td>
<td>0.83 sec</td>
</tr>
<tr>
<td>Online computational speed-up</td>
<td>9.1e4</td>
<td>1.6e6</td>
<td>7.8e5</td>
</tr>
</tbody>
</table>

* For minimizing subspace rotation.
Applications

CPU times (CPU-hours) for offline and online computations*

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Airfoil</th>
<th>Low Re Cavity</th>
<th>Moderate Re Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM # of DOF</td>
<td>360,000</td>
<td>288,250</td>
<td>243,750</td>
</tr>
<tr>
<td>Time-integration of FOM</td>
<td>7.8 hrs</td>
<td>72 hrs</td>
<td>179 hrs</td>
</tr>
<tr>
<td>Basis construction (size $n + p$ ROM)</td>
<td>0.16 hrs</td>
<td>0.88 hrs</td>
<td>3.44 hrs</td>
</tr>
<tr>
<td>Galerkin projection (size $n + p$ ROM)</td>
<td>0.74 hrs</td>
<td>5.44 hrs</td>
<td>14.8 hrs</td>
</tr>
<tr>
<td>Stabilization</td>
<td>28 sec</td>
<td>14 sec</td>
<td>170 sec</td>
</tr>
<tr>
<td>ROM # of DOF</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Time-integration of ROM</td>
<td>0.31 sec</td>
<td>0.16 sec</td>
<td>0.83 sec</td>
</tr>
<tr>
<td>Online computational speed-up</td>
<td>9.1e4</td>
<td>1.6e6</td>
<td>7.8e5</td>
</tr>
</tbody>
</table>

- Stabilization is *fast* (O(sec) or O(min)).

* For minimizing subspace rotation.
Applications

CPU times (CPU-hours) for offline and online computations*

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Airfoil</th>
<th>Low Re Cavity</th>
<th>Moderate Re Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM # of DOF</td>
<td>360,000</td>
<td>288,250</td>
<td>243,750</td>
</tr>
<tr>
<td>Time-integration of FOM</td>
<td>7.8 hrs</td>
<td>72 hrs</td>
<td>179 hrs</td>
</tr>
<tr>
<td>Basis construction (size $n + p$ ROM)</td>
<td>0.16 hrs</td>
<td>0.88 hrs</td>
<td>3.44 hrs</td>
</tr>
<tr>
<td>Galerkin projection (size $n + p$ ROM)</td>
<td>0.74 hrs</td>
<td>5.44 hrs</td>
<td>14.8 hrs</td>
</tr>
<tr>
<td>Stabilization</td>
<td>28 sec</td>
<td>14 sec</td>
<td>170 sec</td>
</tr>
<tr>
<td>ROM # of DOF</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Time-integration of ROM</td>
<td>0.31 sec</td>
<td>0.16 sec</td>
<td>0.83 sec</td>
</tr>
<tr>
<td>Online computational speed-up</td>
<td>9.1e4</td>
<td>1.6e6</td>
<td>7.8e5</td>
</tr>
</tbody>
</table>

- Stabilization is **fast** ($O(\text{sec})$ or $O(\text{min})$).
- Significant **online computational speed-up**!

* For minimizing subspace rotation.
1. Motivation

2. Projection-based model order reduction

3. Accounting for modal truncation
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation

4. Applications
 • High angle of attack laminar airfoil
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity

5. Summary

6. Future work

7. References
Summary

• We have developed a non-intrusive approach for stabilizing and fine-tuning projection-based ROMs for compressible flows.

• The standard POD modes are “rotated” into a more dissipative regime to account for the dynamics in the higher order modes truncated by the standard POD method.

• The new approach is consistent and does not require the addition of empirical turbulence model terms unlike traditional approaches.

• Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold.

• The constrained minimization problem is solved offline and small enough to be solved in MATLAB.

• The method is demonstrated on several compressible flow problems and shown to deliver stable and accurate ROMs.
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation
4. Applications
 • High angle of attack laminar airfoil
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
Future work

- Application to higher Reynolds number problems.
- Extension of the proposed approach to problems with generic nonlinearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to minimal-residual-based nonlinear ROMs.
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and/or Mach number.
- Selecting different goal-oriented objectives and constraints in our optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \mathbf{X} \in V_{(n+p),n} \quad f(\mathbf{X}) \\
\text{subject to} & \quad g(\mathbf{X}, \mathbf{L}) = 0
\end{align*}
\]
e.g.,

- Maximize parametric robustness:
 \[f = \sum_{i=1}^{k} \beta_i \| \mathbf{U}^*(\mu_i)\mathbf{X} - \mathbf{U}^*(\mu_i) \|_F.\]
- ODE constraints: \[g = \| \mathbf{a}(t) - \mathbf{a}^*(t) \|.\]
Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation
4. Applications
 • High angle of attack laminar airfoil
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
References

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 • Traditional linear eddy-viscosity approach
 • New proposed approach via subspace rotation
4. Applications
 • Low Reynolds number channel driven cavity
 • Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
8. Appendix
Appendix: Accounting for modal truncation

Stabilization algorithm: returns stabilizing rotation matrix X.

Inputs: Initial guess $\eta^{(0)} = \text{tr}(L(1:n,1:n))$ ($X = I_{(n+p) \times n}$), ROM size n and $p \geq 1$, ROM matrices associated with the first $n + p$ most energetic POD modes, convergence tolerance TOL, maximum number of iterations k_{max}.

for $k = 0, \ldots, k_{max}$

Solve constrained optimization problem on Stiefel manifold:

$$
\begin{align*}
\text{minimize} & \quad X^{(k)} \in \mathcal{V}_{(n+p), n} \\
& - \text{tr} \left(X^{(k)^T} I_{(n+p) \times n} \right) \\
\text{subject to} & \quad \text{tr}(X^{(k)^T} L X^{(k)}) = \eta^{(k)}.
\end{align*}
$$

Construct new Galerkin matrices using (4).
Integrate numerically new Galerkin system.
Calculate “modal energy” $E(t)^{(k)} = \sum_i \eta_i (a(t_i)^{(k)})^2$.
Perform linear fit of temporal data $E(t)^{(k)} \approx c_1^{(k)} t + c_0^{(k)}$, where $c_1^{(k)} =$ energy growth.
Calculate ϵ such that $c_1^{(k)}(\epsilon) = 0$ (no energy growth) using root-finding algorithm.
Perform update $\eta^{(k+1)} = \eta^{(k)} + \epsilon$.

if $||c_1^{(k)}|| < TOL$

$X := X^{(k)}$.

terminate the algorithm.

end