Coupled physics using Albany and PUMI

Brian N. Granzow
Mario Juha, Dan A. Ibanez, Max M. Bloomfield, Assad A. Oberai, Mark S. Shephard
January 18, 2016

Albany User’s Meeting 2017
Sandia National Laboratory
Livermore, California USA
Introduction
Previous Albany + PUMI applications

Albany + PUMI have already been used successfully for:

- Thermomechanical simulations of dielectric deep trenches.
- Creep + Thermo-elastoplasticity for flip-chip packages.
- Error estimation/adaptation for uncertain flows.
- Large deformation elastoplasticity simulations.

Applications currently run through AlbanyT executable.
i.e. Albany executable is the ‘driver’ at the highest level.

Motivation to use Albany as a library

Simulation workflows:

- Want to control software components from a high-level driver.
- Albany - FEM analysis / advanced analysis features.
- PUMI - parallel mesh services / mesh adaptation.
- Other codes - advanced capabilities / additional physics.

Application examples:

- Additive manufacturing with evolving geometries.
- One-way coupled physics.
- Dislocation dynamics coupling to finite element methods.
- Adaptive simulations with goal-oriented error estimation.
Adaptive simulation workflows
Using Albany as a library
Code structure
Application-specific executables

Replace ‘Driver’ box with newly developed application

- Retain rich set of physics already implemented in Albany.
- Flexibility to implement new application specific drivers.
- Less interference with AlbanyT application development.

Potential overhead associated with this approach:

- Potential for some ‘overlap’ code.
- Code-base becomes more spread out.
Dislocation Dynamics
Overview

- Dislocation segments/loops embedded in domain.
- Initial dynamics of dislocation segments/loops solved for in infinite domain.
- FEM simulation modifies dynamics to account for effect of finite domain.
Proposed workflow

1. Compute new location of dislocation segment nodes.
2. Generate FEM mesh such that a mesh vertex is placed at each dislocation segment node location.
3. Pre-process FEM mesh + dislocation segment nodes to compute appropriate traction and displacement BCs.
5. Using FEM solution info - compute forces acting on dislocation segment nodes.
6. Repeat.
Software components - ParaDis

- Parallel dislocation dynamics code.
- Originally developed at LLNL.
- Solves dynamics of dislocations in infinite domain.
- Can be modified to account for finite domains.

Figure 2: https://pls.llnl.gov/people/divisions/physics-division/condensed-matter-science-section/eos-and-materials-theory-group/projects/dislocation-dynamics-for-single-crystal-plasticity-of-bcc-metals
Software components - Simmetrix

- Finite element mesh generation
- Mesh generation conformal to segment nodes.
- Query intersection of dislocation segments with FEM domain boundary.

Figure 3: Random dislocation segments in a cube
Software components - Albany

- Parallel finite element analysis engine.
- Incorporate traction + displacement boundary conditions.

Figure 4: Stress induced by single dislocation segment
Flow of data

ParaDis

- Passes segment information (node locations) to

Simmetrix

- Generates FEA mesh for

Pre-processor

- Generates BCs for

Albany

- Provides segment force information to
Goal-oriented error estimation and mesh adaptation
Proposed workflow

1. Build \(p \)-order finite element linear algebra and discretization data structures.

2. Compute the solution to the primal problem using \(p \)-order finite elements.

3. Enrich linear algebra and discretization data structures to account for \(p + 1 \)-order finite elements.

4. Compute global error estimate \(\mathcal{E} \approx J(u) - J(u^h) \).

5. Localize error estimate at the mesh entity level.

6. Adapt the mesh based on localized error estimates.

7. Repeat.
Software components - Albany

- Parallel finite element analysis engine.
- Compute the FEM solution to the primal problem.
- Compute the FEM solution to the dual problem.
- Compute local contributions to the error.

Figure 5: Example primal solution
Figure 6: Example dual solution
Software components - SCOREC

- Large suite of parallel mesh services.
- Unstructured mesh adaptation.
- Parallel partitioning and load balancing.
Builds p-order data
Builds p+1-order data
Solves primal FEM problem
Solves dual FEM problem
Estimates error
Updates mesh data
Adapts mesh

Albany

u^H
z^h

SCOREC
Questions?
Thank you!