Global Optimization:
For Some Problems, There’s HOPE

Daniel M. Dunlavy
University of Maryland, College Park
Applied Mathematics and Scientific Computation
Outline

• Problem and Existing Methods
• Homotopy Optimization Methods
• Protein Structure Prediction Problem
• Numerical Experiments
• Conclusions/Future Directions
Problem

• Solve the unconstrained minimization problem

\[f(x^*) = \min_{x \in \mathbb{R}^n} f(x) \quad (f : \mathbb{R}^n \to \mathbb{R}) \]

• Function Characteristics
 – Solution exists, smooth (\(f \in C^2(\mathbb{R}^n, \mathbb{R}) \))
 – Complicated (multiple minima, deep local minima)
 – Good starting points unknown/difficult to compute

• Challenges
 – Finding solution in reasonable amount of time
 – Knowing when solution has been found
Some Existing Methods

• Exhaustive/enumerative search
• Stochastic search [Spall, 2003]; adaptive [Zabinsky, 2003]
• “Globalized” local search [Pinter, 1996]
• Branch and bound [Horst and Tuy, 1996]
• Genetic/evolutionary [Voss, 1999]

• Smoothing methods [Piela, 2002]
• Simulated annealing [Salamon, et al., 2002]
• Homotopy/continuation methods [Watson, 2000]
Outline

• Problem and Existing Methods
• **Homotopy Optimization Methods**
• Protein Structure Prediction Problem
• Numerical Experiments
• Conclusions/Future Directions
Homotopy Methods for Solving Nonlinear Equations

• Goal
 – Solve complicated nonlinear target system
 \[f_1(x) = 0, \quad (f_1 : \mathbb{R}^n \rightarrow \mathbb{R}^n) \]

• Steps to solution
 – Easy template system: \(f_0(x^0) = 0 \) (\(x^0 \) known)
 – Define a continuous homotopy function:
 \[h(x, \lambda) = \begin{cases}
 f_0(x), & \text{if } \lambda = 0 \\
 f_1(x), & \text{if } \lambda = 1
 \end{cases} \]
 – Example (convex): \(h(x, \lambda) = (1 - \lambda)f_0(x) + \lambda f_1(x) \)
 – Trace path of \(h(x, \lambda) = 0 \) from \(\lambda = 0 \) to \(\lambda = 1 \)
Homotopy Optimization Methods (HOM)

• Goal
 – Minimize complicated nonlinear target function
 \[\min_{x \in \mathbb{R}^n} f_1(x), \quad (f_1 : \mathbb{R}^n \to \mathbb{R}) \]

• Steps to solution
 – Easy template function: \(f_0(x^0) = \min_{x \in \mathbb{R}^n} f_0(x) \)
 – Define a continuous homotopy function:
 \[h(x, \lambda) = \begin{cases}
 f_0(x), & \text{if } \lambda = 0 \\
 f_1(x), & \text{if } \lambda = 1
 \end{cases} \]
 • Example (convex): \(h(x, \lambda) = (1 - \lambda)f_0(x) + \lambda f_1(x) \)
 – Produce sequence of minimizers of \(h(x, \lambda) \) w.r.t. \(x \)
 starting at \(\lambda = 0 \) and ending at \(\lambda = 1 \)
Illustration of HOM

\[x^* = \min_{x \in \mathbb{R}} f_1(x) \quad h(x, \lambda) = (1 - \lambda) f_0(x) + \lambda f_1(x) \]

\[\nabla_x h = 0 \; ; \; \nabla^2_x h > 0 \]
Homotopy Optimization using Perturbations & Ensembles (HOPE)

• Improvements over HOM
 – Produces ensemble of sequences of local minimizers of $h(x, \lambda)$ by perturbing intermediate results
 – Increases likelihood of predicting global minimizer

• Algorithmic considerations
 – Maximum ensemble size
 – Determining ensemble members
Illustration of HOPE

Constraint: ensemble size $\equiv |E| \leq 2$

$x^* = \min_{x \in \mathbb{R}} f_1(x) \quad h(x, \lambda) = (1-\lambda)f_0(x) + \lambda f_1(x)$

$\nabla_x h = 0 ; \quad \nabla^2_x h > 0$
Convergence of HOPE

Goal: \(m \in \mathbb{Z}^+ \text{ s.t. } \mathbb{P}(\exists x \in \mathbb{E}_m \mid x \in S_N) > \rho \)
Convergence of HOPE

\[f_0(x) = -\sin(x) + \sin(Nx) \]

\[f_1(x) = \sin(x) + \sin(Nx) \]
Convergence of HOPE

\[\xi(x) = x + \delta ; \ \delta \in \mathcal{U} \left[\frac{-3\pi}{N}, \frac{3\pi}{N} \right] \Rightarrow P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \cdots & \cdots & \cdots \\ 1 & 1 & 1 \end{bmatrix} \]

\[\mathbb{E}_0 = \{ x^0 \} ; \ \mathbb{E}_k = \mathbb{E}_{k-1} \cup \{ \text{perturbed versions of } \mathbb{E}_{k-1} \} \]

No constraints on ensemble size: \[|\mathbb{E}_m| = 2^m \]

\[\mathcal{P}(\exists x \in \mathbb{E}_m : x \in S_N) = 1 - \prod_{k=0}^{m} \left(1 - e_i^T P^k e_N \right)^{\binom{m}{k}} \]

\[\geq 1 - \prod_{k=\kappa}^{m} \left(1 - P^k_{N/2,N} \right)^{\binom{m}{k}} \quad (\kappa = \min\{i, N - i\}) \]

\[= 1 - \prod_{k=\kappa}^{m} \left(1 - \frac{1}{3N} \sum_{l=0}^{N-1} (-1)^l \left(1 + 2 \cos \left(\frac{2\pi l}{N} \right) \right) \right)^{\binom{m}{k}} \]
Outline

• Problem and Existing Methods
• Homotopy Optimization Methods
• **Protein Structure Prediction Problem**
• Numerical Experiments
• Conclusions/Future Directions
Protein Structure Prediction

Given the amino acid sequence of a protein (1D), is it possible to predict its native structure (3D)?

Amino Acid Sequence

Protein Structure
Protein Structure Prediction

- **Given:**
 - Protein model
 - Molecular properties
 - Potential energy function (force field)

- **Goal:**
 - Predict lowest energy conformation
 - Native structure [Anfinsen, 1973]
 - Develop hybrid method, combining:
 - Energy minimization [numerical optimization]
 - Comparative modeling [bioinformatics]
 - Use **template** (known structure) to predict **target** structure
Protein Model: Particle Properties

• **Backbone model**
 – Single chain of particles with residue attributes
 – Particles model C_α atoms in proteins

 ![Backbone model diagram]

• **Properties of particles**
 – Hydrophobic, Hydrophilic, Neutral
 – Diverse hydrophobic-hydrophobic interactions

Protein Model: Energy Function

\[E(X) = E_{bl}(X) + E_{ba}(X) + E_{dih}(X) + E_{non}(X) \]

\[E_{bl}(X) = \sum_{i=1}^{n-1} \frac{k_r}{2} (r_{i,i+1} - \bar{r})^2 \]

\[E_{ba}(X) = \sum_{i=1}^{n-2} \frac{k_\theta}{2} (\theta_i - \bar{\theta})^2 \]

\[E_{dih}(X) = \sum_{i=1}^{n-3} \left[A_i (1 + \cos \phi_i) + B_i (1 + \cos 3\phi_i) \right] \]

\[E_{non}(X) = \sum_{i=1}^{n-3} \sum_{j=i+3}^{n} \gamma_{ij} \left\{ \alpha_{ij} \left(\frac{r}{r_{ij}} \right)^{12} - \beta_{ij} \left(\frac{r}{r_{ij}} \right)^6 \right\} \]
Homotopy Optimization Method for Proteins

• Goal
 – Minimize energy function of target protein
 \[\min_{X \in \mathbb{R}^{3n}} E^1(X), \quad (E^1 : \mathbb{R}^{3n} \rightarrow \mathbb{R}) \]

• Steps to solution
 – Energy of template protein: \(E^0(X^0) = \min_{X \in \mathbb{R}^{3n}} E^0(X) \)
 – Define a homotopy function:
 \[H(X, \lambda) = \rho^0(\lambda)E^0(X) + \rho^1(\lambda)E^1(X) \]
 • Deforms template protein into target protein
 – Produce sequence of minimizers of \(H(X, \lambda) \)
 starting at \(\lambda = 0 \) and ending at \(\lambda = 1 \)
Outline

• Problem and Existing Methods
• Homotopy Optimization Methods
• Protein Structure Prediction Problem
• **Numerical Experiments**
• Conclusions/Future Directions
Numerical Experiments

9 chains (22 particles) with known structure

Loop Region

<table>
<thead>
<tr>
<th>Hydrophobic</th>
<th>Hydrophilic</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

Sequence Matching (%)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>77</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>86</td>
<td>91</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>91</td>
<td>86</td>
<td>77</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>82</td>
<td>73</td>
<td>82</td>
<td>100</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>68</td>
<td>59</td>
<td>77</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>68</td>
<td>59</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>59</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
</tbody>
</table>
Numerical Experiments
Numerical Experiments

• 62 template-target pairs
 – 10 pairs had identical native structures

• Methods
 – HOM vs. Newton’s method w/trust region (N-TR)
 – HOPE vs. simulated annealing (SA)
 • Different ensemble sizes (2,4,8,16)
 • Averaged over 10 runs
 • Perturbations where sequences differ

• Measuring success
 – Structural overlap function: $0 \leq \chi \leq 1$
 • Percentage of interparticle distances off by more than 20% of the average bond length (\bar{r})
 – Root mean-squared deviation (RMSD)
Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Ensemble Size</th>
<th>$\chi = 0$</th>
<th>Success</th>
<th>Mean χ</th>
<th>Mean RMSD</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOM</td>
<td>2</td>
<td>33.40</td>
<td>0.54</td>
<td>0.14</td>
<td>0.17</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43.10</td>
<td>0.70</td>
<td>0.08</td>
<td>0.11</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>54.60</td>
<td>0.88</td>
<td>0.03</td>
<td>0.04</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>59.00</td>
<td>0.95</td>
<td>0.01</td>
<td>0.02</td>
<td>200</td>
</tr>
<tr>
<td>N-TR</td>
<td>4</td>
<td>13.10</td>
<td>0.21</td>
<td>0.27</td>
<td>0.36</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>28.50</td>
<td>0.46</td>
<td>0.13</td>
<td>0.19</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>40.20</td>
<td>0.65</td>
<td>0.08</td>
<td>0.12</td>
<td>434</td>
</tr>
</tbody>
</table>
Results

Success of HOPE and SA with ensembles of size 16 for each template-target pair. The size of each circle represents the percentage of successful predictions over the 10 runs.
Outline

• Problem and Existing Methods
• Homotopy Optimization Methods
• Protein Structure Prediction Problem
• Numerical Experiments
• Conclusions/Future Directions
Conclusions

• Homotopy optimization methods
 – More successful than standard minimizers

• HOPE
 – For problems with $f^0, x^0 (E^0, X^0)$ readily available
 – Solves protein structure prediction problem
 – Outperforms ensemble-based simulated annealing
 • SA parameters not optimal
HOPEful Directions

• **Protein structure prediction**
 – Protein Data Bank (templates)
 – Different size chains for template/target

• **HOPE for other minimization problems**
 – Standard test problems
 – Probabilistic convergence analysis \((\mathbb{R}^n)\)

• **HOPE for large-scale problems**
 – Inherently parallelizable
 – Communication: enforce maximum ensemble size
Other Work/Interests

• **Optimization**
 – Surrogate models in APPSPACK (pattern search)

• **Linear Algebra**
 – Structure preserving eigensolvers
 • Quaternion-based Jacobi-like methods
 – RF circuit design – efficient DAE solvers
 • Preconditioners, harmonic-balance methods

• **Information processing/extraction**
 – Entity recognition/disambiguation
 • Persons, locations, organization
 – Querying, clustering and summarizing documents
Acknowledgements

• Dianne O’Leary (UM)
 – Advisor
• Dev Thirumalai (UM), Dmitri Klimov (GMU)
 – Model, suggestions
• Ron Unger (Bar-Ilan)
 – Problem formulation
• National Library of Medicine (NLM)
 – Grant: F37-LM008162
Thank You

Daniel Dunlavy – HOPE

http://www.math.umd.edu/~ddunlavy
ddunlavy@math.umd.edu
Homotopy Parameter Functions

• Split low/high frequency dihedral terms
 \[E_{dih}(X) = E_{dih1}(X) + E_{dih2}(X) \]
 \[= \sum_{i=1}^{n-3} A_i(1 + \cos \phi_i) + \sum_{i=1}^{n-3} B_i(1 + \cos 3\phi_i) \]

• Homotopy parameter functions for each term
 \[H(X, \lambda) = E_{bl}^0(X) + E_{ba}^0(X) \]
 \[+ (1 - \rho_{dih1}(\lambda))E_{dih1}^0(X) + \rho_{dih1}(\lambda)E_{dih1}^1(X) \]
 \[+ (1 - \rho_{dih2}(\lambda))E_{dih2}^0(X) + \rho_{dih2}(\lambda)E_{dih2}^1(X) \]
 \[+ (1 - \rho_{non}(\lambda))E_{non}^0(X) + \rho_{non}(\lambda)E_{non}^1(X) \]

\[\rho(\lambda) = \begin{cases}
0, & \text{if } \lambda = 0 \\
1, & \text{if } \lambda = 1
\end{cases} \]
Homotopy Function for Proteins

Different $\rho(\lambda)$ for individual energy terms

Template $\rho^0(\lambda)$

Target $\rho^1(\lambda)$
HOPE Algorithm

Given: f_0, f_1, h, x^0
N_E (max ensemble size), N_ξ (# of perturbations)

Initialize: $E_0 = x^0$, $\lambda = \Delta \lambda$, $k = 1$

while ($\lambda \leq 1$)
 for $j = 1 : \text{length}(E_{k-1})$
 for $i = 1 : N_\xi$
 $X(j,i) = \min_x h(x, \lambda)$, using $\xi(E_{k-1,j})$ as starting point
 end
 end
 $X(j,0) = \min_x h(x, \lambda)$, using $E_{k-1,j}$ as starting point
end

save at most N_E ”best” points in X in E_k

$\lambda = \lambda + \Delta \lambda$, $k = k + 1$
end
Structural Overlap Function

\[
\chi = 1 - \frac{2}{n^2 - 5n + 6} \sum_{i=1}^{n-3} \sum_{j=i+3}^{n} \Theta \left(0.2\bar{r} - |r_{ij} - r_{ij}^*| \right)
\]
RMSD

Measures the distance between corresponding particles in the predicted and lowest energy conformations when they are optimally superimposed.

\[RMSD(X) = \min_{S(X)} \sqrt{\frac{1}{n} \sum_{i=1}^{n} \| X_i - X_i^* \|^2} \]

where \(S(X) \) is a rotation and translation of \(X \).