Positron Method For Detection And Measurement Of Helium-3 Bubbles

R. A. Sigg and M. H. Tosten
Analytical Development and Materials Technology Sections
November 2, 2005
Stainless Steels applied for tritium processing and storage
- Tritium diffuses into the steel
- Decays to 3He
- Bubble formation

Positron Annihilation Lifetime Spectrometry (PALS)
- Scoping study
- Potential for earlier detection of defect / bubble formation
- Plant Directed R&D (PDRD) funded

Complement previous and ongoing TEM studies
PALS Technique

- Expose material to positrons (β^+) from a 22Na source
 - Sandwich source between stainless steel samples
 - Exposed surface: ~1 cm radius

- Measure time difference from decay to annihilation
 - Start signal: 22Na gamma (1274 keV)
 - Stop signal: Annihilation photon (511 keV)
 - Select components for time resolution
 - “Fast-Fast” coincidence
PALS Technique

- **Time spectra**
 - Instrumental resolution
 - 60Co
 - Coincident gamma-rays
 - No β^+ diffusion and annihilation delay
 - 0.25 nsec FWHM
 - Sample and positron source
 - Broad tail
 - Thermalization
 - Diffusion
 - Trapping
 - Annihilation

- Plastic Scintillators

![Lifetime Spectra](image)
SAMPLES

- 304 and 316LN Stainless Steels
 - Control samples: No tritium exposure
 - Tritium-exposed samples
 - Tritium loaded: Pressurized, 350° C, 2 weeks
 - Ingrowth: -23° C, Duration: 6 to 9 months
 - Tritium removal: Vacuum, 450° C, 3 weeks
 - 3He Concentrations
 - Measured at PNNL
 - 304: 68.1 and 85.6 appm
 - 316LN: 65.7 and 91.3 appm
Stability

- Gain instability
 - Multiple spectra
 - Centroid shifts

- Corrected
 - Rebinned data
 - Constant centroid
 - Improved FWHM
Spectra comprised of
- Sum of several discrete exponential decay components
 - Sample
 - Source
- Convolved by Gaussian broadening function

Software
- Lifetime 9
 - Least squares fit
 - Lifetimes
 - Intensities
 - Background
 - Zero offset channel (T₀)
- Maximum Entropy Lifetime (MELT) Method
 - Yields more consistent lifetime estimates with fewer counts
 - Input to LT9 to reduce free parameters
PALS Results

- **PALS**
 - Best for lifetimes $>\sim 0.050$ nsec
 - Data for 0.024 nsec not shown
 - No clear changes in observed 0.165 nsec lifetime component

- **Trendlines show changes**
 - 0.33 and 1.10 nsec components
 - Intensities vary with 3He concentration

- Relatively few samples
- Low concentration range
PALS Results

- **Trendlines again show changes**
 - 0.33 and 1.10 nsec components
 - Intensities vary with 3He concentration
 - 0.33 component consistent with microvoids of ~15 vacancies

- **However:**
 - Relatively few samples
 - Low concentration range
TEM Results

- Analyzed helium bubble distribution

- 304 stainless steel
 - Helium bubbles observed
 - In the matrix (grain interiors)
 - On matrix dislocations: Associated with 10-20 nm diameter dislocation loops

- 316LN stainless steel
 - Surprisingly, no discernable helium bubbles were observed
 - Slight contrast variations at some dislocations may indicate possible bubble formation
 - No actual bubbles were observed
CONCLUSIONS AND RECOMMENDATIONS

- **PALS Method**
 - Applied to 304 and 316LN Stainless Steels
 - Scoping study shows changes with increasing 3He concentration

- **Recommend**
 - Larger number of samples to confirm results
 - Higher 3He concentrations than those available for this study
 - Determine a "true" number density of bubbles/loops in the 304 specimens for comparison with PALS data
 - Investigate differences between PALS and TEM results on 316LN