Helium Distribution in Erbium Tritide Films

Rex P. Hjelm
hjelm@lanl.gov

Lujan Neutron Scattering Center
Los Alamos National Laboratory

Sandia Metal Hydride Workshop
Albuquerque, New Mexico
2 October 2005
Collaborators

James Browning
Sandia National Laboratories

Gillian Bond
New Mexico Institute of Mining and Technology
Defects Structure

Domain-structured & filled polymers

Instrumentation, methods & analysis

Colloid interactions

Surfactant self-assembly

Helium bubbles

Molecular motors

Polymer dynamic response
Objective

Show morphology and distribution of hydrogen bubbles formed in Erbium hydride films and how this may determine the distribution of 3He, using neutron small-angle scattering measurements and transmission electron microscopy.
The neutron generator:
A small-linear deuterium ion accelerator with a deuterium/tritium target utilizing the d+T and d+d fusion reactions to generate neutrons.

Erbium hydride formation and the release of ^3He:
The decay of tritium to helium-three and the subsequent release of helium. We want to understand the factors governing helium release.

The small-angle scattering experiment:
Neutrons provide good light element contrast. The small-angle geometry provides a probe for structure between 1 and 100 nm.

A remarkable result:
Hydride formation introduces plate-like defects along preferred directions and distances to form a long length scale quasi-lattice. These may serve as retention sites for helium.

The effect may be observed in other metal hydrides:
Similar, reversible effects may have been observed in palladium hydrides.
Applications of Erbium Tritide films in Neutron Generators

• A neutron generator is a small electrostatic accelerator incorporating an ion source, ion optics and a target in a compact vacuum envelope.

• Deuterium ions (D+) derived from a plasma source are accelerated in electric fields to impact tritium atoms (T) in a target to yield neutrons through nuclear reactions,
 \[d + T \rightarrow \alpha + n + 17.6\text{MeV} \]
 \[d + d \rightarrow ^3\text{He} + n + 3.3\text{MeV} \]

 to provide 14 or 2.5MeV neutrons, respectively.

• They are used in,
 – Bore hole logging
 – Medical research
 – Defense systems
 – Contraband detection systems

• There are strict requirements of the defined operational characteristics and life.
Target films are ErD_xT_y

- Erbium hydride, as is the case with all rare earth hydrides, possesses the ability to accommodate hydrogen concentrations up to three times the atomic concentration of erbium.
- The dihydride phase assumes the CaF_2 structure with hydrogen atoms occupying tetrahedral sites.
- Because tritium is radioactive (τ_{1/2} = 12.3 yr), these binary hydride systems transform into ternary systems with time.
- ^3He is generated at a rate given by the time rate of decay of tritium and may be expressed as:
 \[G(t) = N_0(1 - e^{-\lambda t}) \]
- It is well known that much of the ^3He generated does not readily diffuse from the film, but remains trapped within the polycrystalline material.
- Trapping mechanism is not understood.
A fundamental understanding of helium release is required to predict the expected life of neutron generator.

- He is eventually released into the vacuum envelope.
- Significant variation in point of release.
Program Objective

- Provide a fundamental understanding of the behavior of ^3He in erbium dihydride systems.
 - In order to optimize target film characteristics such that we minimize ^3He release from the film, i.e., maximize ^3He retention.

- Determine how process parameters influence this behavior.
 - Materials properties are driven by structure, which in turn can be influenced by process parameters.
Three known hydride phases in Erbium

\(\alpha \):
- a solid solution phase of hydrogen in the hcp Erbium lattice.
- \(H/Er < 0.5 \).

\(\beta \):
- a distinct chemical entity, \(\text{ErH}_2 \).
- Forms an fcc (\(\text{CaF}_2 \)) lattice with hydrogen at the tetrahedral sites.
- 7% volume increase hcp->fcc.
- \(H/Er \approx 1.8 \) to 2.2.
- Coexists with the \(\alpha \) and \(\gamma \) phases

\(\gamma \):
- \(H/Er \approx 2.9 \) to 3.0
Erbium film and hydride formation

- **Erbium film:**
 - Electron beam physical vapor deposition at 450°C 1 nm/sec.
 - A 100nm Mo layer deposited on silicon substrate {100}.
 - A 500nm Er layer deposited onto the Mo layer.

- **Hydride formation:**
 - β-phase:
 - ErT$_2$ (Savannah River Technology Site).
 - ErD$_2$ (Los Alamos National Laboratory).
 - tritium pressure of approximately 200Torr.
 - temperature of 475°C.
Summary

- Neutron generator technology plays a key role in a wide range of applications including national defense and security.
- Understanding the physical mechanism of neutron tube target aging is critical to our mission.
- The application of various neutron scattering techniques provides not only a unique way of investigating 3He behavior in materials, but provides critical data necessary in the development of a fundamental understanding of such systems.
Fundamentals of the Small-angle Scattering Technique

- A schematic of a typical small-angle scattering instrument:
- An x-ray or neutron source is collimated into a beam with defined direction, typically using two pinholes.
- The beam is scattering from the sample and the scattering is detected as scattering intensity as a function of scattering angle, 2θ, on a two dimensional detector.
- Scattering due to fluctuations in scattering length density.
- Scattering intensity measured as a function of momentum transfer, Q.
- Inverse relationship between Q and real space length scales probed.
- Small-angle (low-Q) scattering probes large length scales.
- Scattered intensity, Fourier transform squared of structure, $\rho(r)$.

\[Q = \frac{4\pi}{\lambda} \sin \theta \]

\[A(Q) = \int \rho(r) \exp(-iQ.r) \, dv \quad \frac{d\Sigma(Q)}{d\Omega} = |A(Q)|^2 \]
SAS as a Structural Probe

- **X-ray and neutron SAS:**
 - structures on length scales of 1-100 nm.
 - Bulk properties.
 - Three-dimensional structures.
 - Particulate and continuous phase morphology.

- Neutrons:
 - Useful to study bulk samples because they penetrate matter easily.
 - Sensitive to light elements, such as hydrogen, carbon and nitrogen.
 - Sensitive to isotopes, such as hydrogen and deuterium.

- **X-rays:**
 - Electron scattering—sensitive to atomic number.
 - High fluxes.
Neutron scattering: Light Element and Isotope Contrast

Hydrogen Isotope Scattering Lengths (b) in (fm):

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Scattering Length (b) in (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>-3.7409 (11)</td>
</tr>
<tr>
<td>2D</td>
<td>6.674 (6)</td>
</tr>
<tr>
<td>3T</td>
<td>4.792 (27)</td>
</tr>
</tbody>
</table>

Scattering Length Density: $\rho = \sum b_i/V$

- Good light element contrast and isotopic labeling.
- Light and heavy elements have similar scattering lengths.
- Good sample penetrability and no radiation damage.
- Wavelengths comparable with atomic and molecular length scales.
- Energies comparable with atomic vibrations and molecular dynamic energies.
- Atomic form factor constant in Q.

Los Alamos National Laboratory

Rex Hjelm
Scattering Length for X-rays

- X-ray scattering lengths monotonic with $Z \propto \rho$.
- Large difference in scattering length between light and heavy elements.
- X-ray scattering lengths large.
- X-ray form factors a function of Q.
LQD: a state of the art TOF-SANS

<table>
<thead>
<tr>
<th>LQD Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength Range</td>
<td>2 - 15 Å</td>
</tr>
<tr>
<td>Angular Range</td>
<td>4 - 60 mrad</td>
</tr>
<tr>
<td>Q-range</td>
<td>0.0023 - 0.5 Å⁻¹</td>
</tr>
<tr>
<td>Typical Sample Size</td>
<td>10 x 13 mm</td>
</tr>
<tr>
<td>Detector</td>
<td>Two dimensional proportional counter</td>
</tr>
<tr>
<td>Moderator</td>
<td>Partially-coupled liquid H₂ at 20 K.</td>
</tr>
<tr>
<td>Sample Environments</td>
<td>Air, vacuum, closed cycle temperature control, pressure to 3 KB, shear cell</td>
</tr>
<tr>
<td>Typical Measurement Times</td>
<td>2 min - 6 hours</td>
</tr>
</tbody>
</table>

- **Brightest pulsed spallation cold moderator.**
- **Advanced background suppression.**
- **Advanced optics and count rate control.**

LQD Specifications:
- Brightest pulsed spallation cold moderator.
- Advanced background suppression.
- Advanced optics and count rate control.

In the diagram:
- Incident beam monitor
- Frame overlap chopper
- T-zero chopper
- Collimation tube
- Sample position
- Removable spools
- Alignment mirror
- Beamstop
- Detector
- Scattering tube
- Optical bench
- Dynamic collimation aperture
- Collimation aperture
- Gamma shield & attenuator
- Chopper monitor
- Guard and variable collimator apertures
In situ structure and aging with small-angle neutron scattering

- **Small-angle neutron scattering:**
 - Sample chamber sealed with Conflat™ flanges containing fused silica neutron windows.
 - 18-27 samples mounted in transmission geometry along the beam by the silicon support.
 - Silica and silicon are nearly transparent to neutron beam.
 - Neutrons are non-destructive.

- **Samples:**
 - ErT$_2$ (β-phase): evolution of structure as $T \rightarrow 3\text{He} + \beta^- + \nu$, forming ErHe$_xT_y$.
 - ErD$_2$ to check for loading effects.
 - Er and Si baseline studies.

- **In situ structural and aging studies:**
 - Evolution of structure determined from 3 months to 2-1/2 years by measuring samples measured *in situ*.
 - Angular studies for three-dimensional imaging.
Erbium Hydride Structure—a surprise!

- No diffraction from Si <100>—above the Bragg limit for \(\lambda \).
- A few diffraction spots in Erbium films.
- Cruciform Patterns Observed in all Erbium Hydride Samples:
 - Arms at 90º.
 - Sometimes a ropy appearance.
 - Sometimes distinct diffraction spots.
- Very low \(Q \) values—implies large repeats ~10’s nm.
- Oriented structure.
Hydriding process introduces a large scale quasi-lattice into the film

- Scattering Intensity
 - Product of four terms:
 \[I(Q) = N\Delta\rho^2V^2P(Q)S(Q) \]
 - \(N \): number of objects.
 - \(\Delta\rho = \rho_A - \rho_B \): scattering length density contrast.
 - \(V \): object volume.
 - \(P(Q) \): object form factor.
 - \(S(Q) \): object structure factor.

Given the properties of the Fourier transform we must be looking at families of stacked planes at 90° viewed edge on.
Strong Selection for planes viewed perpendicularly

- Ewald sphere change size (wavelength).
- Orientation.
- See different families of planes

\[\frac{2\pi}{\lambda} \]
With the evolution of ^3He the diffraction becomes stronger

- Same sample three months and 2.5 years after hydridization.
- Three months:
 - Ropy appearance.
 - Broad, poorly resolved diffraction peaks.
 - Peaks close to equal intensity.
- 2.5 years:
A long scale quasi-lattice

d-spacings (Å)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mos</td>
<td>2.5 yr</td>
<td>3 mos</td>
<td>2.5 yr</td>
<td>3 mos</td>
<td>2.5 yr</td>
</tr>
<tr>
<td>490</td>
<td>210</td>
<td>280</td>
<td>280</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>150</td>
<td>140</td>
<td>140</td>
<td>190</td>
<td>180</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>110</td>
<td>110</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>70</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

- **Lattice spacings:**
 - Large ~100 Å.
 - Vary with different batches.
 - No obvious d-preference.
 - Ambiguous as to intra and/or inter sample variability.

- **Changes with time:**
 - Observed only in ErT$_2$.
 - Diffraction peaks more distinct as 3He accumulates.

- **Indications:**
 - Defects introduced by hydridization.
 - 3He may accumulate in defects.
Bubble content: 10 GPa plausible, but no proof.

- Calculation is subject to uncertainties.
- Based on observations from other systems, Bubble pressure ≈ 10 GPa.
- Assume no isotope effect.
- Difficult to determine bubble content.
TEM: Transverse film sections show bubbles on the \{111\} planes

a) Bright-field transmission electron micrograph
b) Selected-area diffraction pattern close to <110> zone axis

- Two sets of plate-like helium bubbles are visible, at an angle of \(~72^\circ\)
- Helium bubbles appear to lie on \{111\} planes

TEM Samples:
- Wafer with films cleaved into strips
- Strips mounted in sandwich configuration
- Cross-section cut, ground and polished
- Sample dimpled until film thickness \(~10\ \mu m\)
- Ion milled at \(~3.5 - 4^\circ\) and 5kV until perforation
- Examined in JEOL JEM-2000FX TEM at 200 kV
• These results came as a surprise.
• Issues:
 – What is determining the preferred orientation?
 – Why are there preferred long range spacings into a quasi-lattice?
 – Why is there four-fold symmetry in the diffraction pattern?
• Supporting data (TEM and XRD) suggest “platelet” like structure populating the (111) planes in similar samples.
• Possible explanation: Defects are controlled by stress field introduced by Si substrate.
 – Si (100) surface.
 – Si cut along (011).
 – Large Mo modulus—could transmit stress between Si and ErH$_2$ lattice.
Conclusions

• **SANS**
 – provides contrast not available by other means.
 – Neutron penetrability allows studies of samples *in situ*.
 – Provides a non-destructive probe.

• **Hydride formation:**
 – introduces plate-like defects along preferred directions and distances to form a long length scale quasi-lattice.
 – These may serve as retention sites for helium.