Publications

Results 1–50 of 58

Search results

Jump to search filters

Adaptively remeshed multiphysical modeling of resistance forge welding with experimental validation of residual stress fields and measurement processes

International Journal of Solids and Structures

Stershic, Andrew J.; D'Elia, Christopher; Beghini, Lauren L.; Hill, Michael; Clausen, Bjorn; Balch, Dorian K.; Maguire, Michael C.; San Marchi, Chris; Foulk, James W.; Hanson, Alexander A.; Manktelow, Kevin

Welding processes used in the production of pressure vessels impart residual stresses in the manufactured component. Computational modeling is critical to predicting these residual stress fields and understanding how they interact with notches and flaws to impact pressure vessel durability. Here, in this work, we present a finite element model for a resistance forge weld and validate it using laboratory measurements. Extensive microstructural changes, near-melt temperatures, and large localized deformations along the weld interface pose significant challenges to Lagrangian finite element modeling. The proposed modeling approach overcomes these roadblocks in order to provide a high-fidelity simulation that can predict the residual stress state in the manufactured pressure vessel; a rich microstructural constitutive model accounts for material recrystallization dynamics, a frictional-to-tied contact model is coordinated with the constitutive model to represent interfacial bonding, and adaptive remeshing is employed to alleviate severe mesh distortion. An interrupted-weld approach is applied to the simulation to facilitate comparison to displacement measures. Several techniques are employed for residual stress measurement in order to validate the finite element model: neutron diffraction, the contour method, and the slitting method. Model-measurement comparisons are supplemented with detailed simulations that reflect the configurations of the residual-stress measurement processes themselves. The model results show general agreement with experimental measurements, and we observe some similarities in the features around the weld region. Factors that contribute to model-measurement differences are identified. Finally, we conclude with some discussion of the model development and residual stress measurement strategies, including how to best leverage the efforts put forth here for other weld problems.

More Details

A coupled fluid-mechanical workflow to simulate the directed energy deposition additive manufacturing process

Computational Mechanics

Beghini, Lauren L.; Stender, Michael; Moser, Daniel R.; Trembacki, Bradley L.; Veilleux, Michael G.; Ford, Kurtis

Simulation of additive manufacturing processes can provide essential insight into material behavior, residual stress, and ultimately, the performance of additively manufactured parts. In this work, we describe a new simulation based workflow utilizing both solid mechanics and fluid mechanics based formulations within the finite element software package SIERRA (Sierra Solid Mechanics Team in Sierra/SolidMechanics 4.52 User’s Guide SAND2019-2715. Technical report, Sandia National Laboratories, 2011) to enable integrated simulations of directed energy deposition (DED) additive manufacturing processes. In this methodology, a high-fidelity fluid mechanics based model of additive manufacturing is employed as the first step in a simulation workflow. This fluid model uses a level set field to track the location of the boundary between the solid material and background gas and precisely predicts temperatures and material deposition shapes from additive manufacturing process parameters. The resulting deposition shape and temperature field from the fluid model are then mapped into a solid mechanics formulation to provide a more accurate surface topology for radiation and convection boundary conditions and a prescribed temperature field. Solid mechanics simulations are then conducted to predict the evolution of material stresses and microstructure within a part. By combining thermal history and deposition shape from fluid mechanics with residual stress and material property evolutions from solid mechanics, additional fidelity and precision are incorporated into additive manufacturing process simulations providing new insight into complex DED builds.

More Details

Implementation and Verification of Isolated Defects for GTS Lifecycle Analyses

Bergel, Guy L.; Beghini, Lauren L.

Often, the presence of cracks in manufactured components are detrimental to their overall performance. We develop a workflow and tools in this report using CUBIT and Sierra/SM for generating and modeling crack defects to better understand their impact on such components. To this end, we provide a CUBIT library of various prototypical crack defects embedded in pipes and plates that can be readily used in a wide range of simulations, with specific application to those used in Gas Transfer Systems (GTS). We verify the accuracy of the J-integral post-processing capability in Sierra against solutions available in existing literature for the cracks and geometries of interest within the context of linear elastic fracture mechanics, and describe ongoing efforts to quantify and assess numerical errors. Through this process, we outline overall suggestions and recommendations to the user based on the proposed workflow.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, Robert A.; Argibay, Nicolas; Allen, Kyle; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad L.; Brown, Judith A.; Burchard, Ross L.; Chandross, Michael E.; Cook, Adam; Diantonio, Christopher; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis; Ivanoff, Thomas; Jared, Bradley H.; Johnson, Kyle L.; Kammler, Daniel; Koepke, Joshua R.; Kustas, Andrew B.; Lavin, Judith M.; Leathe, Nicholas S.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal; Martinez, Mario J.; Moser, Daniel R.; Rodgers, Theron M.; Seidl, D.T.; Brown-Shaklee, Harlan J.; Stanford, Joshua; Stender, Michael; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha; Trembacki, Bradley L.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, Robert A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David; Cook, Adam; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua; Boyce, Brad L.; Johnson, Kyle L.; Rodgers, Theron M.; Ford, Kurtis; Martinez, Mario J.; Moser, Daniel R.; Van Bloemen Waanders, Bart; Chandross, Michael E.; Abdeljawad, Fadi F.; Allen, Kyle; Stender, Michael; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas; Brown-Shaklee, Harlan J.; Kustas, Andrew B.; Sugar, Joshua D.; Kammler, Daniel; Wilson, Mark A.

Abstract not provided.

A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling

Additive Manufacturing

Stender, Michael; Beghini, Lauren L.; Sugar, Joshua D.; Dagel, Daryl; Subia, Samuel R.; Veilleux, Michael G.; San Marchi, Chris; Brown, Arthur

This work proposes a finite element (FE) analysis workflow to simulate directed energy deposition (DED) additive manufacturing at a macroscopic length scale (i.e. part length scale) and to predict thermal conditions during manufacturing, as well as distortions, strength and residual stresses at the completion of manufacturing. The proposed analysis method incorporates a multi-step FE workflow to elucidate the thermal and mechanical responses in laser engineered net shaping (LENS) manufacturing. For each time step, a thermal element activation scheme captures the material deposition process. Then, activated elements and their associated geometry are analyzed first thermally for heat flow due to radiation, convection, and conduction, and then mechanically for the resulting stresses, displacements, and material property evolution. Simulations agree with experimentally measured in situ thermal measurements for simple cylindrical build geometries, as well as general trends of local hardness distribution and plastic strain accumulation (represented by relative distribution of geometrically necessary dislocations).

More Details

Additive manufacturing: Toward holistic design

Scripta Materialia

Jared, Bradley H.; Valentin, Miguel A.; Beghini, Lauren L.; Boyce, Brad L.; Clark, Brett W.; Cook, Adam; Kaehr, Bryan J.; Robbins, Joshua

Additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.

More Details

Thermal mechanical finite element simulation of additive manufacturing; process modeling of the LENS process

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Stender, Michael; Beghini, Lauren L.; Veilleux, Michael G.; Subia, Samuel R.; Sugar, Joshua D.

Laser engineered net shaping (LENS) is an additive manufacturing process that presents a promising method of creating or repairing metal parts not previously feasible with traditional manufacturing methods. The LENS process involves the directed deposition of metal via a laser power source and a spray of metal powder co-located to create and feed a molten pool (also referred to generically as Directed Energy Deposition, DED). DED technologies are being developed for use in prototyping, repair, and manufacturing across a wide variety of materials including stainless steel, titanium, tungsten carbidecobalt, aluminum, and nickel based superalloys. However, barriers to the successful production and qualification of LENS produced or repaired parts remain. This work proposes a finite element (FE) analysis methodology capable of simulating the LENS process at the continuum length scale (i.e. part length scale). This method incorporates an element activation scheme wherein only elements that exceed the material melt temperature during laser heating are activated and carried through to subsequent analysis steps. Following the initial element activation calculation, newly deposited, or activated elements and the associated geometry, are carried through to thermal and mechanical analyses to calculate heat flow due to radiation, convection, and conduction as well as stresses and displacements. The final aim of this work is to develop a validated LENS process simulation capability that can accurately predict temperature history, final part shape, distribution of strength, microstructural properties, and residual stresses based on LENS process parameters.

More Details

Development of a Multi-physics Capability for Predicting Residual Stress in a GTS Reservoir

Manktelow, Kevin; Beghini, Lauren L.

This report documents completion of a Level 2 Milestone on the development of a multi-physics capability to predict the evolving material state through the manufacturing process of a Gas Transfer Systems (GTS) reservoir. We present details on new developments and capability improvements that address the following completion criteria: (i) validation of a microstructure evolution model, including recrystallization and strain aging, (ii) demonstration of the capability to remesh, map and transfer material state (internal state variables) and residual stress from forging to machining to welding processes, and (iii) formal V&V characterization and quantification of uncertainties of material parameters and manufacturing process parameters on residual stress.

More Details

Process Modeling for Additive Manufacturing

Beghini, Lauren L.; Stender, Michael; Veilleux, Michael G.

Additive Manufacturing (AM) provides a new avenue to design innovative materials and components that cannot be created using traditional machining operations. With current AM capabilities, complex designs (such as those required in weapon systems) can be readily manufactured with laser powder forming (or Laser-Engineered Net Shaping (LENSTM)) [1] that would be otherwise cost prohibitive or impossible to produce. However, before an AM product can be qualified for weapon applications, the characteristics of the metals produced by additive manufacturing processes need to be well understood. This work focuses on the development of computational simulation tools to model the metal additive manufacturing process. This work extends and integrates existing Sandia National Laboratories tools to accomplish the following: (i) be able to better predict residual stresses in AM product, (ii) extend high-fidelity material models to capture material evolution during the formation process, leading to prediction of end-state material properties, and (iii) provide a basis for engineering tools to propose improvements to additive manufacturing process variables, including those that minimize process variation. While this work in its current state is directly applicable to additive manufacturing processes, the tools developed may also help enable modeling welding processes such as gas tungsten arc (GTA), electron beam, and laser welding.

More Details

V&V of Residual Stress for GTS

Beghini, Lauren L.; Nelson, Stacy M.; Manktelow, Kevin

Residual stresses induced during forging and welding can cause detrimental failure in reservoirs due to enhanced possibility of crack propagation. Therefore, reservoirs must be designed with yield strengths in a tight range. This report summarizes an effort to verify and validate a computational tool that was developed to aid in prediction of the evolution of residual stresses throughout the manufacturing process. The application requirements are identified and summarized in the context of the Predictive Capability Maturity Model (PCMM). The phenomena of interest that the model attempts to capture are discussed and prioritized using the Phenomena Identification and Ranking Table (PIRT) to identify any gaps in our approach. The fidelity of the modeling approach is outlined and details on the implementation and boundary conditions are provided. The code verification requirements are discussed and solution verification is performed, including a mesh convergence study on the series of modeling steps (forging, machining and welding). Validation activities are summarized, including validation of the displacements, residual stresses, recrystallization, yield strength and thermal history. A sensitivity analysis and uncertainty quantification are also performed to understand how variations in the manufacturing process affect the residual stresses.

More Details

Process modeling and experiments for forging and welding

Conference Proceedings of the Society for Experimental Mechanics Series

Brown, Arthur; Deibler, Lisa A.; Beghini, Lauren L.; Kostka, Timothy D.; Antoun, Bonnie R.

We are developing the capability to track material changes through numerous possible steps of the manufacturing process, such as forging, machining, and welding. In this work, experimental and modeling results are presented for a multiple-step process in which an ingot of stainless steel 304L is forged at high temperature, then machined into a thin slice, and finally subjected to an autogenous GTA weld. The predictions of temperature, yield stress, and recrystallized volume fraction are compared to experimental results.

More Details
Results 1–50 of 58
Results 1–50 of 58