Publications

Results 26–31 of 31

Search results

Jump to search filters

Advanced compression-ignition engines - Understanding the in-cylinder processes

Proceedings of the Combustion Institute

Dec, John E.

Advanced compression-ignition (CI) engines can deliver both high efficiencies and very low NOx and particulate (PM) emissions. Efficiencies are comparable to conventional diesel engines, but unlike conventional diesel engines, the charge is highly dilute and premixed (or partially premixed) to achieve low emissions. Dilution is accomplished by operating either lean or with large amounts of EGR. The development of these advanced CI engines has evolved mainly along two lines. First, for fuels other than diesel, a combustion process commonly known as homogeneous charge compression-ignition (HCCI) is generally used, in which the charge is premixed before being compression ignited. Although termed "homogeneous," there are always some thermal or mixture inhomogeneities in real HCCI engines, and it is sometimes desirable to introduce additional stratification. Second, for diesel fuel (which autoignites easily but has low volatility) an alternative low-temperature combustion (LTC) approach is used, in which the autoignition is closely coupled to the fuel-injection event to provide control over ignition timing. To obtain dilute LTC, this approach relies on high levels of EGR, and injection timing is typically shifted 10-15° CA earlier or later than for conventional diesel combustion so temperatures are lower, which delays ignition and provides more time for premixing. Although these advanced CI combustion modes have important advantages, there are difficulties to implementing them in practical engines. In this article, the principles of HCCI and diesel LTC engines are reviewed along with the results of research on the in-cylinder processes. This research has resulted in substantial progress toward overcoming the main challenges facing these engines, including: improving low-load combustion efficiency, increasing the high-load limit, understanding fuel effects, and maintaining low NOx and PM emissions over the operating range. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

Effects of engine speed, fueling rate, and combustion phasing on the thermal stratification required to limit HCCI knocking intensity

Sjoberg, Carl M.; Dec, John E.

Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means. This paper describes how adjustments of the thermal width of the in-cylinder charge can be used to limit the ringing intensity to 5 MW/m2 as both engine speed and fueling are increased. If the thermal width can be tailored without constraints, this enables smooth operation even for combinations of high speed, high load, and combustion phasing close to TDC. Since large alterations of the thermal width of the charge are not always possible, combustion retard is considered to reduce the requirement on the thermal stratification. The results show that combustion retard carries significant potential since it amplifies the benefit of a fixed thermal width. Therefore, the thermal stratification required for operation with an acceptable knocking intensity can be decreased substantially by the use of combustion retard. This enables combinations of high engine speed and high fueling rate even for operation with the naturally occurring thermal stratification. However, very precise control of the combustion phasing will likely be required for such operation.

More Details
Results 26–31 of 31
Results 26–31 of 31