Publications

Results 26–44 of 44

Search results

Jump to search filters

Effect of Weather on the Predicted PMN Landmine Chemical Signature for Kabul, Afghanistan

Webb, Stephen W.; Phelan, James M.

Buried landmines are often detected through the chemical signature in the air above the soil surface by mine detection dogs. Environmental processes play a significant role in the chemical signature available for detection. Due to the shallow burial depth of landmines, the weather influences the release of chemicals from the landmine, transport through the soil to the surface, and degradation processes in the soil. The effect of weather on the landmine chemical signature from a PMN landmine was evaluated with the T2TNT code for Kabul, Afghanistan. Results for TNT and DNT gas-phase and soil solid-phase concentrations are presented as a function of time of the day and time of the year.

More Details

Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

Phelan, James M.

Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

More Details

Characterization of Scrap Materials for Mass Detonating Energetic Materials - Final Report, Project CU1194

Phelan, James M.; Barnett, James B.

Military test and training ranges generate scrap materials from targets and ordnance debris. These materials are routinely removed from the range for recycling; however, energetic material residues in this range scrap has presented a significant safety hazard to operations personnel and damaged recycling equipment. The Strategic Environmental Research and Development Program (SERDP) sought proof of concept evaluations for monitoring technologies to identify energetic residues among range scrap. Sandia National Laboratories teamed with Nomadics, Inc. to evaluate the Nomadics FIDO vapor sensor for application to this problem. Laboratory tests were completed that determined the vapor-sensing threshold to be 10 to 20 ppt for TNT and 150 to 200 ppt for DNT. Field tests with the FIDO demonstrated the proof of concept that energetic material residues can be identified with vapor sensing in enclosed scrap bins. Items such as low order detonation debris, demolition block granules, and unused 81-mm mortars were detected quickly and with minimum effort. Conceptual designs for field-screening scrap for energetic material residues include handheld vapor sensing systems, batch scrap sensing systems, continuous conveyor sensing systems and a hot gas decontamination verification system.

More Details

Chemical Soil Physics Phenomena for Chemical Sensing of Buried UXO

Phelan, James M.

Technology development efforts are under way to apply chemical sensors to discriminate inert ordnance and clutter from live munitions that remain a threat to reutilization of military ranges. However, the chemical signature is affected by multiple environmental phenomena that can enhance or reduce its presence and transport behavior, and can affect the distribution of the chemical signature in the environment. For example, the chemical can be present in the vapor, aqueous, and solid phases. The distribution of the chemical among these phases, including the spatial distribution, is key in designing appropriate detectors, e.g., gas, aqueous or solid phase sampling instruments. A fundamental understanding of the environmental conditions that affect the chemical signature is needed to describe the favorable and unfavorable conditions of a chemical detector based survey to minimize the consequences of a false negative. UXO source emission measurements are being made to estimate the chemical flux from a limited set of ordnance items. Phase partitioning analysis has been completed to show what the expected concentrations of chemical analytes would be fi-om total concentrations measured in the soil. The soil moisture content in the dry region has been shown to be critical in the attenuation of soil gas concentrations by increased sorption to soil particles. Numerical simulation tools have been adapted to include surface boundary conditions such as solar radiation, surface boundary layer (which is a function of wind speed), precipitation and evaporation, and plant cover/root density to allow transport modeling and evaluate long term processes. Results of this work will provide performance targets for sensor developers and support operational decisions regarding field deployments.

More Details

Air sparging/high vacuum extraction to remove chlorinated solvents in groundwater and soil

Phelan, James M.

An air sparging and high vacuum extraction was installed as an alternative to a containment pump and treat system to reduce the long-term remediation schedule. The site is located at the DOE Mound facility in Miamisburg, Ohio, just south of Dayton. The air sparging system consists of 23 wells interspersed between 17 soil vapor extraction wells. The SVE system has extracted about 1,500 lbs of VOCs in five months. The air sparging system operated for about 6 weeks before shutdown due to suspected biochemical fouling. Technical data are presented on the operating characteristics of the system.

More Details

Chemical detection of buried landmines

Phelan, James M.

Of all the buried landmine identification technologies currently available, sensing the chemical signature from the explosive components found in landmines is the only technique that can classify non-explosive objects from the real threat. In the last two decades, advances in chemical detection methods has brought chemical sensing technology to the foreground as an emerging technological solution. In addition, advances have been made in the understanding of the fundamental transport processes that allow the chemical signature to migrate from the buried source to the ground surface. A systematic evaluation of the transport of the chemical signature from inside the mine into the soil environment, and through the soil to the ground surface is being explored to determine the constraints on the use of chemical sensing technology. This effort reports on the results of simulation modeling using a one-dimensional screening model to evaluate the impacts on the transport of the chemical signature by variation of some of the principal soil transport parameters.

More Details

Simulation of the environmental fate and transport of chemical signatures from buried landmines

Phelan, James M.

The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine and estimate the subsurface total concentration. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

More Details

Design, demonstration and evaluation of a thermal enhanced vapor extraction system

Phelan, James M.

The Thermal Enhanced Vapor Extraction System (TEVES), which combines powerline frequency heating (PLF) and radio frequency (RF) heating with vacuum soil vapor extraction, was used to effectively remove volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from a pit in the chemical waste landfill (CWL) at Sandia National Laboratories (SNL) within a two month heating period. Volume average temperatures of 83{degrees}C and 112{degrees}C were reached for the PLF and RF heating periods, respectively, within the 15 ft x 45 ft x 18.5 ft deep treated volume. This resulted in the removal of 243 lb of measured toxic organic compounds (VOCs and SVOCs), 55 gallons of oil, and 11,000 gallons of water from the site. Reductions of up to 99% in total chromatographic organics (TCO) was achieved in the heated zone. Energy balance calculations for the PLF heating period showed that 36.4% of the heat added went to heating the soil, 38.5% went to evaporating water and organics, 4.2% went to sensible heat in the water, 7.1% went to heating the extracted air, and 6.6% was lost. For the RF heating period went to heating the soil, 23.5% went to evaporating water and organics, 2.4% went to sensible heat in the water, 7.5% went to heating extracted air, and 9.7% went to losses. Energy balance closure was 92.8% for the PLF heating and 98% for the RF heating. The energy input requirement per unit soil volume heated per unit temperature increase was 1.63 kWH/yd{sup 3}-{degrees}C for PLF heating and 0.73 kWH/yd{sup 3}{degrees}C for RF heating.

More Details

Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

Phelan, James M.

The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

More Details

Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

Phelan, James M.

Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

More Details

Thermal enhanced vapor extraction systems: Design, application and performance prediction including contaminant behavior

Phelan, James M.

Soil heating technologies have been proposed as a method to accelerate contaminant removal from subsurface soils. These methods include the use of hot air, steam, conductive heaters, in-situ resistive heating and in-situ radiofrequency heating (Buettner et.al., EPA, Dev et.al., Heath et.al.). Criteria for selection of a particular soil heating technology is a complex function of contaminant and soil properties, and efficiency in energy delivery and contaminant removal technologies. The work presented here seeks to expand the understanding of the interactions of subsurface water, contaminant, heat and vacuum extraction through model predictions and field data collection. Field demonstration will involve the combination of two soil heating technologies (resistive and dielectric) with a vacuum vapor extraction system and will occur during the summer of 1994.

More Details

Thermal enhanced vapor extraction system-cooperative ER/OTD technology development

Phelan, James M.

An improved technology to extract VOCs from the unsaturated zone has developed into a cooperative Environmental Restoration and Technology Development effort. This cooperation is important because the timing of an innovative technology demonstration is critical to the transfer of that technology into an ER remedial action decision. The Mixed-Waste Landfill Integrated Demonstration (MWLID) Program will be demonstrating a Thermal Enhanced Vapor Extraction System that will improve existing vacuum vapor extraction technology by applying in-situ soil heating. Combined demonstrations of vacuum vapor extraction and both powerline frequency and radiofrequency soil heating technologies began in FY92.

More Details
Results 26–44 of 44
Results 26–44 of 44