Neurogenesis Deep Learning
Abstract not provided.
Abstract not provided.
Abstract not provided.
Biologically Inspired Cognitive Architectures
Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.
Neural Computation
The dentate gyrus forms a critical link between the entorhinal cortex and CA3 by providing a sparse version of the signal. Concurrent with this increase in sparsity, a widely accepted theory suggests the dentate gyrus performs pattern separation-similar inputs yield decorrelated outputs. Although an active region of study and theory, few logically rigorous arguments detail the dentate gyrus's (DG) coding.We suggest a theoretically tractable, combinatorial model for this action. The model provides formal methods for a highly redundant, arbitrarily sparse, and decorrelated output signal. To explore the value of this model framework, we assess how suitable it is for two notable aspects of DG coding: how it can handle the highly structured grid cell representation in the input entorhinal cortex region and the presence of adult neurogenesis, which has been proposed to produce a heterogeneous code in the DG.We find tailoring themodel to grid cell input yields expansion parameters consistent with the literature. In addition, the heterogeneous coding reflects activity gradation observed experimentally. Finally,we connect this approach with more conventional binary threshold neural circuit models via a formal embedding.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Neural machine learning methods, such as deep neural networks (DNN), have achieved remarkable success in a number of complex data processing tasks. These methods have arguably had their strongest impact on tasks such as image and audio processing – data processing domains in which humans have long held clear advantages over conventional algorithms. In contrast to biological neural systems, which are capable of learning continuously, deep artificial networks have a limited ability for incorporating new information in an already trained network. As a result, methods for continuous learning are potentially highly impactful in enabling the application of deep networks to dynamic data sets. Here, inspired by the process of adult neurogenesis in the hippocampus, we explore the potential for adding new neurons to deep layers of artificial neural networks in order to facilitate their acquisition of novel information while preserving previously trained data representations. Our results on the MNIST handwritten digit dataset and the NIST SD 19 dataset, which includes lower and upper case letters and digits, demonstrate that neurogenesis is well suited for addressing the stability-plasticity dilemma that has long challenged adaptive machine learning algorithms.
2016 IEEE International Conference on Rebooting Computing, ICRC 2016 - Conference Proceedings
For decades, neural networks have shown promise for next-generation computing, and recent breakthroughs in machine learning techniques, such as deep neural networks, have provided state-of-the-art solutions for inference problems. However, these networks require thousands of training processes and are poorly suited for the precise computations required in scientific or similar arenas. The emergence of dedicated spiking neuromorphic hardware creates a powerful computational paradigm which can be leveraged towards these exact scientific or otherwise objective computing tasks. We forego any learning process and instead construct the network graph by hand. In turn, the networks produce guaranteed success often with easily computable complexity. We demonstrate a number of algorithms exemplifying concepts central to spiking networks including spike timing and synaptic delay. We also discuss the application of cross-correlation particle image velocimetry and provide two spiking algorithms; one uses time-division multiplexing, and the other runs in constant time.
Neuron
Opportunities offered by new neuro-technologies are threatened by lack of coherent plans to analyze, manage, and understand the data. High-performance computing will allow exploratory analysis of massive datasets stored in standardized formats, hosted in open repositories, and integrated with simulations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the International Joint Conference on Neural Networks
Through various means of structural and synaptic plasticity enabling online learning, neural networks are constantly reconfiguring their computational functionality. Neural information content is embodied within the configurations, representations, and computations of neural networks. To explore neural information content, we have developed metrics and computational paradigms to quantify neural information content. We have observed that conventional compression methods may help overcome some of the limiting factors of standard information theoretic techniques employed in neuroscience, and allows us to approximate information in neural data. To do so we have used compressibility as a measure of complexity in order to estimate entropy to quantitatively assess information content of neural ensembles. Using Lempel-Ziv compression we are able to assess the rate of generation of new patterns across a neural ensemble's firing activity over time to approximate the information content encoded by a neural circuit. As a specific case study, we have been investigating the effect of neural mixed coding schemes due to hippocampal adult neurogenesis.
Abstract not provided.
Abstract not provided.
Proceedings of the National Academy of Sciences of the United States of America
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2-expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.