Assessing the effect of in-situ plasma cleaning on electrode plasma formation in a 650-kA MITL
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Z Machine at Sandia National Laboratories uses current pulses with peaks up to 27 MA to drive target implosions and generate high energy density conditions of interest for stockpile stewardship programs pertinent to the NNSA program portfolio . Physical processes in the region near the Z Machine target create electrode plasmas which seed parasitic current loss that reduce the performance and output of a Z experiment. Electrode surface contaminants (hydrogen, water, hydrocarbons) are thought to be the primary constituent of electrode plasmas which contribute to loss mechanisms. The Sandia team explore d in situ heating and plasma discharge techniques by integrating requisite infrastructure into Sandia's Mykonos LTD accelerator, addressing potential impacts to accelerator operation, and reporting on the impact of these techniques on electrode plasma formation and shot performance. The in situ discharge cleaning utilizes the electrodes of the accelerator to excite an argon-oxygen plasma to sputter and chemically react contaminants from electrode surfaces. Insulating breaks are required to isolate the plasma in electrode regions where loss processes are most likely to occur. The shots on Mykonos validate that these breaks do not perturb experiment performance, reducing the uncertainty on the largest unknown about the in situ cleaning system. Preliminary observations with electrical and optical diagnostics suggest that electrode plasma formation is delayed, and overall inventory has been substantively reduced. In situ heating embeds cartridge heaters into accelerator electrodes and employs a thermal bakeout to rapidly desorb contaminants from electrode surfaces. For the first time, additively manufactured (AM) electrode assemblies were used on a low impedance accelerator to integrate cooling channels and manage thermal gradients. Challenges with poor supplier fabrication to specifications, load alignment, thermal expansion and hardware movement and warpage appears to have introduced large variability in observed loss, though, preventing strong assertions of loss reduction via in situ heating. At this time, an in situ discharge cleaning process offers the lowest risk path to reduce electrode contaminant inventories on Z, though we recommend continuing to develop both approaches. Additional engineering and testing are required to improve the implementation of both systems. .
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Reliability Engineering and System Safety
The reliable design of magnetically insulated transmission lines (MITLs) for very high current pulsed power machines must be accomplished in the future by utilizing a variety of sophisticated modeling tools. The complexity of the models required is high and the number of sub-models and approximations large. The potential for significant analyst error using a single tool is large, with possible reliability issues associated with the plasma modeling tools themselves or the chosen approach by the analyst to solve a given problem. We report on a software infrastructure design that provides a workable framework for building self-consistent models and constraining feedback to limit analyst error. The framework and associated tools aid the development of physical intuition, the development of increasingly sophisticated models, and the comparison of performance results. The work lays the computational foundation for designing state-of-the-art pulsed-power experiments. The design and useful features of this environment are described. We discuss the utility of the Git source code management system and a GitLab interface for use in project management that extends beyond software development tasks.
Physical Review Accelerators and Beams
Kinetic simulations of Sandia National Laboratories' Z machine are conducted to understand particle transport in the highly magnetized environment of a multi-MA accelerator. Joule heating leads to the rapid formation of electrode surface plasmas. These plasmas are implicated in reducing accelerator efficiency by diverting current away from the load [M.R. Gomez et al., Phys. Rev. Accel. Beams 20, 010401 (2017)PRABCJ2469-988810.1103/PhysRevAccelBeams.20.010401, N. Bennett et al., Phys. Rev. Accel. Beams 22, 120401 (2019)PRABCJ2469-988810.1103/PhysRevAccelBeams.22.120401]. The fully-relativistic, electromagnetic simulations presented in this paper show that particles emitted in a space-charge-limited manner, in the absence of plasma, are magnetically insulated. However, in the presence of plasma, particles are transported across the magnetic field in spite of being only weakly collisional. The simulated cross-gap currents are well-approximated by the Hall current in the generalized Ohm's law. The Hall conductivities are calculated using the simulated particle densities and energies, and the parameters that increase the Hall current are related to transmission line inductance. Analogous to the generalized Ohm's law, we extend the derivation of the magnetized diffusion coefficients to include the coupling of perpendicular components. These yield a Hall diffusion rate, which is equivalent to the empirical Bohm diffusion.
This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.
Abstract not provided.
Abstract not provided.
Large pulsed power accelerators deliver multi-MJ pulses of electrical energy to a variety of high energy density (HED) physics experiments that support stockpile science programs. Understanding the plasma formation mechanisms and resulting electrical power transport (or "power flow") in the vacuum magnetically insulated transmission lines (MITLs) is an important area of ongoing research, and could provide a means to improve the performance of today's pulsed power accelerators while improving confidence in the design options for next-generation pulsed power concepts. Power flow science has been studied for decades, but these studies have not provided a predictive understanding of plasma formation and expansion in MITL systems. Several recent factors in pulsed power system design have generated a renewed (and urgent) interest in developing validated, multi-physics power flow engineering models with increased scrutiny and understanding. Examples of these factors include (i) the use of high inductance experimental configurations that could increase current "loss", (ii) interest in long-pulse applications that require predictable pulse shapes, and (iii) the desire to develop a deeper understanding of how current loss phenomena scale to larger accelerator configurations. This work is directed to support the validation of multi-physics power flow engineering models required to realize pulsed power systems for the NNSA mission.
Physical Review Accelerators and Beams
Two-dimensional electromagnetic (EM) particle-in-cell (PIC) simulations of a radial magnetically-insulated-transmission-line are presented and compared to the model of E. M. Waisman, M. P. Desjarlais, and M. E. Cuneo [Phys. Rev. Accel. Beams 22, 030402 (2019) in the “high-enhancement” (WDC-HE) limit. The simulations use quasi-equilibrium current and voltage values based on the Sandia National Laboratories Z accelerator, with prescribed injection of an electron sheath that gives electron density profiles qualitatively similar to those used in the WDC-HE model. We find that the WDC-HE model accurately predicts the quasiequilibrium ion current losses in the EM PIC simulations for a wide range of current and voltage values. For the case of two ion species where one is magnetically insulated by the ambient magnetic field and the other is not, the charge of the lighter insulated species in the anode-cathode gap can modify the electric field profile, reducing the ion current density enhancement for the heavier ion species. On the other hand, for multiple ion species, when the lighter ions are not magnetically insulated and are a significant fraction of the anode plasma, they dominate the current loss, producing loss currents which are a significant fraction of the lighter ion WDC values. The observation of this effect in the present work is new to the field and may significantly impact the analysis of ion current losses in the Z machine inner MITL and convolute.
Abstract not provided.
Abstract not provided.
Abstract not provided.