A Study on the Integration between SIMT and Scalar Cores: Loosely Coupled to Tightly Coupled
Abstract not provided.
Abstract not provided.
Abstract not provided.
The basic building block of a distributed-memory cluster or supercomputer is a node. Each node includes a host, which is a processor (xPU) + memory hierarchy. The host can communicate with other hosts via its NIC (network interface controller). A network connects the nodes. The nodes may be arranged in some topology, which determines the network’s carrying capacity and cost.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The ASC program seeks to use machine learning to improve efficiencies in its stockpile stewardship mission. Moreover, there is a growing market for technologies dedicated to accelerating AI workloads. Many of these emerging architectures promise to provide savings in energy efficiency, area, and latency when compared to traditional CPUs for these types of applications — neuromorphic analog and digital technologies provide both low-power and configurable acceleration of challenging artificial intelligence (AI) algorithms. If designed into a heterogeneous system with other accelerators and conventional compute nodes, these technologies have the potential to augment the capabilities of traditional High Performance Computing (HPC) platforms [5]. This expanded computation space requires not only a new approach to physics simulation, but the ability to evaluate and analyze next-generation architectures specialized for AI/ML workloads in both traditional HPC and embedded ND applications. Developing this capability will enable ASC to understand how this hardware performs in both HPC and ND environments, improve our ability to port our applications, guide the development of computing hardware, and inform vendor interactions, leading them toward solutions that address ASC’s unique requirements.
Abstract not provided.
Analog computing has been widely proposed to improve the energy efficiency of multiple important workloads including neural network operations, and other linear algebra kernels. To properly evaluate analog computing and explore more complex workloads such as systems consisting of multiple analog data paths, system level simulations are required. Moreover, prior work on system architectures for analog computing often rely on custom simulators creating signficant additional design effort and complicating comparisons between different systems. To remedy these issues, this report describes the design and implementation of a flexible tile-based analog accelerator element for the Structural Simulation Toolkit (SST). The element focuses on heavily on the tile controller—an often neglected aspect of prior work—that is sufficiently versatile to simulate a wide range of different tile operations including neural network layers, signal processing kernels, and generic linear algebra operations without major constraints. The tile model also interoperates with existing SST memory and network models to reduce the overall development load and enable future simulation of heterogeneous systems with both conventional digital logic and analog compute tiles. Finally, both the tile and array models are designed to easily support future extensions as new analog operations and applications that can benefit from analog computing are developed.
CPU/GPU heterogeneous compute platforms are an ubiquitous element in computing and a programming model specified for this heterogeneous computing model is important for both performance and programmability. A programming model that exposes the shared, unified, address space between the heterogeneous units is a necessary step in this direction as it removes the burden of explicit data movement from the programmer while maintaining performance. GPU vendors, such as AMD and NVIDIA, have released software-managed runtimes that can provide programmers the illusion of unified CPU and GPU memory by automatically migrating data in and out of the GPU memory. However, this runtime support is not included in GPGPU-Sim, a commonly used framework that models the features of a modern graphics processor that are relevant to non-graphics applications. UVM Smart was developed, which extended GPGPU-Sim 3.x to in- corporate the modeling of on-demand pageing and data migration through the runtime. This report discusses the integration of UVM Smart and GPGPU-Sim 4.0 and the modifications to improve simulation performance and accuracy.
Abstract not provided.
Abstract not provided.
Proceedings - 2022 IEEE 36th International Parallel and Distributed Processing Symposium, IPDPS 2022
Fabric-attached memory (FAM) is proposed to enable the seamless integration of directly accessible memory modules attached to the shared system fabric, which will provide future systems with flexible memory integration options, mitigate underutilization, and facilitate data sharing. Recently proposed interconnects, such as Gen-Z and Compute Express Link (CXL), define security, correctness, and performance requirements of fabric-attached devices, including memory. These initiatives are supported by most major system and processor vendors, bringing widespread adoption of FAM-enabled systems one step closer to reality and security concerns to the forefront. This paper discusses the challenges for adapting secure memory implementations to FAM-enabled systems for the first time in literature. Specifically, we observe that handling the security metadata used to protect fabric-attached memories needs to be done deliberately to eliminate unintentional integrity check failures and/or security vulnerabilities, caused by an inconsistent view of the shared security metadata across nodes. Our scheme, Minerva, elegantly adapts secure memory implementations to support FAM-enabled systems with negligible performance over-heads (3.8% of an ideal scheme), compared to the performance overhead (99.5% of an ideal scheme) for a scheme that uses conventional invalidation-based cache coherence to ensure the consistency of security metadata across nodes.
Proceedings - 2022 IEEE 36th International Parallel and Distributed Processing Symposium, IPDPS 2022
This work evaluates the benefits of using a 'smart' network interface card (SmartNIC) as a compute accelerator for the example of the MiniMD molecular dynamics proxy application. The accelerator is NVIDIA's BlueField-2 card, which includes an 8-core Arm processor along with a small amount of DRAM and storage. We test the networking and data movement performance of these cards compared to a standard Intel server host using microbenchmarks and MiniMD. In MiniMD, we identify two distinct classes of computation, namely core computation and maintenance computation, which are executed in sequence. We restructure the algorithm and code to weaken this dependence and increase task parallelism, thereby making it possible to increase utilization of the BlueField-2 concurrently with the host. We evaluate our implementation on a cluster consisting of 16 dual-socket Intel Broadwell host nodes with one BlueField-2 per host-node. Our results show that while the overall compute performance of BlueField-2 is limited, using them with a modified MiniMD algorithm allows for up to 20% speedup over the host CPU baseline with no loss in simulation accuracy.
Abstract not provided.
The recent introduction of a new generation of "smart NICs" have provided new accelerator platforms that include CPU cores or reconfigurable fabric in addition to traditional networking hardware and packet offloading capabilities. While there are currently several proposals for using these smartNICs for low-latency, in-line packet processing operations, there remains a gap in knowledge as to how they might be used as computational accelerators for traditional high-performance applications. This work aims to look at benchmarks and mini-applications to evaluate possible benefits of using a smartNIC as a compute accelerator for HPC applications. We investigate NVIDIA's current-generation BlueField-2 card, which includes eight Arm CPUs along with a small amount of storage, and we test the networking and data movement performance of these cards compared to a standard Intel server host. We then detail how two different applications, YASK and miniMD can be modified to make more efficient use of the BlueField-2 device with a focus on overlapping computation and communication for operations like neighbor building and halo exchanges. Our results show that while the overall compute performance of these devices is limited, using them with a modified miniMD algorithm allows for potential speedups of 5 to 20% over the host CPU baseline with no loss in simulation accuracy.
The U.S. Army Research Office (ARO), in partnership with IARPA, are investigating innovative, efficient, and scalable computer architectures that are capable of executing next-generation large scale data-analytic applications. These applications are increasingly sparse, unstructured, non-local, and heterogeneous. Under the Advanced Graphic Intelligence Logical computing Environment (AGILE) program, Performer teams will be asked to design computer architectures to meet the future needs of the DoD and the Intelligence Community (IC). This design effort will require flexible, scalable, and detailed simulation to assess the performance, efficiency, and validity of their designs. To support AGILE, Sandia National Labs will be providing the AGILE-enhanced Structural Simulation Toolkit (A-SST). This toolkit is a computer architecture simulation framework designed to support fast, parallel, and multi-scale simulation of novel architectures. This document describes the A-SST framework, some of its library of simulation models, and how it may be used by AGILE Performers.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sandia National Laboratories is investigating scalable architectural simulation capabilities with a focus on simulating and evaluating highly scalable supercomputers for high performance computing applications. There is a growing demand for RTL model integration to provide the capability to simulate customized node architectures and heterogeneous systems. This report describes the first steps integrating the ESSENTial Signal Simulation Enabled by Netlist Transforms (ESSENT) tool with the Structural Simulation Toolkit (SST). ESSENT can emit C++ models from models written in FIRRTL to automatically generate components. The integration workflow will automatically generate the SST component and necessary interfaces to ’plug’ the ESSENT model into the SST framework.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
MLIR (Multi-Level Intermediate Representation), is an extensible compiler framework that supports high-level data structures and operation constructs. These higher-level code representations are particularly applicable to the artificial intelligence and machine learning (AI/ML) domain, allowing developers to more easily support upcoming heterogeneous AI/ML accelerators and develop flexible domain specific compilers/frameworks with higher-level intermediate representations (IRs) and advanced compiler optimizations. The result of using MLIR within the LLVM compiler framework is expected to yield significant improvement in the quality of generated machine code, which in turn will result in improved performance and hardware efficiency
Proceedings - International Symposium on High-Performance Computer Architecture
1 The exponential growth of data has driven technology providers to develop new protocols, such as cache coherent interconnects and memory semantic fabrics, to help users and facilities leverage advances in memory technologies to satisfy these growing memory and storage demands. Using these new protocols, fabric-Attached memories (FAM) can be directly attached to a system interconnect and be easily integrated with a variety of processing elements (PEs). Moreover, systems that support FAM can be smoothly upgraded and allow multiple PEs to share the FAM memory pools using well-defined protocols. The sharing of FAM between PEs allows efficient data sharing, improves memory utilization, reduces cost by allowing flexible integration of different PEs and memory modules from several vendors, and makes it easier to upgrade the system. One promising use-case for FAMs is in High-Performance Compute (HPC) systems, where the underutilization of memory is a major challenge. However, adopting FAMs in HPC systems brings new challenges. In addition to cost, flexibility, and efficiency, one particular problem that requires rethinking is virtual memory support for security and performance. To address these challenges, this paper presents decoupled access control and address translation (DeACT), a novel virtual memory implementation that supports HPC systems equipped with FAM. Compared to the state-of-The-Art two-level translation approach, DeACT achieves speedup of up to 4.59x (1.8x on average) without compromising security.1Part of this work was done when Vamsee was working under the supervision of Amro Awad at UCF. Amro Awad is now with the ECE Department at NC State.
Programmable accelerators have become commonplace in modern computing systems. Advances in programming models and the availability of unprecedented amounts of data have created a space for massively parallel accelerators capable of maintaining context for thousands of concurrent threads resident on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several massively parallel computing cores. One path for the design of future supercomputers relies on an ability to model the performance of these massively parallel cores at scale. The SST framework has been proven to scale up to run simulations containing tens of thousands of nodes. A previous report described the initial integration of the open-source, execution-driven GPU simulator, GPGPU-Sim, into the SST framework. This report discusses the results of the integration and how to use the new GPU component in SST. It also provides examples of what it can be used to analyze and a correlation study showing how closely the execution matches that of a Nvidia V100 GPU when running kernels and mini-apps.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACM International Conference Proceeding Series
With many recent advances in interconnect technologies and memory interfaces, disaggregated memory systems are approaching industrial adoption. For instance, the recent Gen-Z consortium focuses on a new memory semantic protocol that enables fabric-attached memories (FAM), where the memory and other compute units can be directly attached to fabric interconnects. Decoupling of memory from compute units becomes a feasible option as the rate of data transfer increases due to the emergence of novel interconnect technologies, such as Silicon Photonic Interconnects. Disaggregated memories not only enable more efficient use of capacity (minimizes under-utilization) they also allow easy integration of evolving technologies. Additionally, they simplify the programming model at the same time allowing efficient sharing of data. However, the latency of accessing the data in these Fabric Attached disaggregated Memories (FAMs) is dependent on the latency imposed by the fabric interfaces. To reduce memory access latency and to improve the performance of FAM systems, in this paper, we explore techniques to prefetch data from FAMs to the local memory present in the node (PreFAM). We realize that since the memory access latency is high in FAMs, prefetching a cache block (64 bytes) from FAM can be inefficient, since the possibility of issuing demand requests before the completion of prefetch requests, to the same FAM locations, is high. Hence, we explore predicting and prefetching FAM blocks at a distance; prefetching blocks which are going to be accessed in future but not immediately. We show that, with prefetching, the performance of FAM architectures increases by 38.84%, while memory access latency is improved by 39.6%, with only 17.65% increase in the number of accesses to the FAM, on average. Further, by prefetching at a distance we show a performance improvement of 72.23%.
Abstract not provided.
Abstract not provided.
With the dawn of the exascale era, computer scientists and engineers are faced with tremendous challenges across all facets of the HPC system - scalability, performance, reliability, and power consumption. In particular, the power-performance benefit from one processor generation to the next is seeing ever-diminishing returns and will require fundamental changes in the way we approach computation. In fact, it is likely that different applications will require different types of accelerators in order to meet power, performance, and reliability requirements at scale. One potential type of accelerator, a dataflow architecture, diverges from the traditional sequentially executed instruction model into one that reflects the inherent instruction-level parallelism in a program. This work presents the initial steps toward a tool that can extract the control-dataflow graph from an application.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.