Publications

Results 26–50 of 123

Search results

Jump to search filters

Adjoint-enabled multidimensional optimization of satellite electron/proton shields

20th Topical Meeting of the Radiation Protection and Shielding Division, RPSD 2018

Pautz, Shawn D.; Bruss, Donald E.; Adams, Brian M.; Franke, Brian C.; Blansett, Ethan B.

The design of satellites usually includes the objective of minimizing mass due to high launch costs, which is complicated by the need to protect sensitive electronics from the space radiation environment. There is growing interest in automated design optimization techniques to help achieve that objective. Traditional optimization approaches that rely exclusively on response functions (e.g. dose calculations) can be quite expensive when applied to transport problems. Previously we showed how adjoint-based transport sensitivities used in conjunction with gradient-based optimization algorithms can be quite effective in designing mass-efficient electron/proton shields in one-dimensional slab geometries. In this paper we extend that work to two-dimensional Cartesian geometries. This consists primarily of deriving the sensitivities to geometric changes, given a particular prescription for parametrizing the shield geometry. We incorporate these sensitivities into our optimization process and demonstrate their effectiveness in such design calculations.

More Details

Electron transport algorithms in the integrated tiger series (ITS) codes

20th Topical Meeting of the Radiation Protection and Shielding Division, RPSD 2018

Franke, Brian C.; Kensek, Ronald P.

We describe the three electron-transport algorithms that have been implemented in the ITS Monte Carlo codes. While the underlying cross-section data is similar, each uses a fundamentally unique method, which at a high level are best characterized as condensed history, multigroup, and single scatter. Through a set of comparisons with experimental data and some comparisons of purely numerical results, we discuss various attributes of each of the algorithms and show some of the defects that can affect results.

More Details

Comparison of two Galerkin quadrature methods

Nuclear Science and Engineering

Morel, Jim E.; Warsa, James S.; Franke, Brian C.; Prinja, Anil K.

We compare two methods for generating Galerkin quadratures. In method 1, the standard SN method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard SN method is used to generate the discreteto-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwise sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding SN equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.

More Details
Results 26–50 of 123
Results 26–50 of 123