Publications

Results 26–41 of 41

Search results

Jump to search filters

Wave energy prize experimental sea state selection

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Bull, Diana L.; Dallman, Ann R.

A detailed methodology was used to select the sea states tested in the final stage of the Wave Energy Prize (WEPrize), a public prize challenge sponsored by the U.S. Department of Energy [1]. The winner was selected based on two metrics: a threshold value expressing the benefit to effort ratio (ACE metric) and a second metric which included hydrodynamic performance-related quantities (HPQ). HPQ required additional sea states to query aspects of the techno-economic performance not addressed by ACE. Due to the nature of the WEPrize, limited time was allotted to each contestant for testing and thus a limitation on the total sea states was required. However, the applicability of these sea states was required to encompass seven deployment locations representative of the United States West Coast and Hawaii. A cluster analysis was applied to scatter diagrams in order to determine a subset of sea states that could be scaled to find the average annual power flux at each wave climate for the ACE metric. Four additional sea states were selected, including two highly energetic sea states and two bimodal sea states, to evaluate HPQ. These sea states offer a common experimental testing platform for performance in United States deployment climates.

More Details

Wave energy prize experimental sea state selection

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Bull, Diana L.; Dallman, Ann R.

A detailed methodology was used to select the sea states tested in the final stage of the Wave Energy Prize (WEPrize), a public prize challenge sponsored by the U.S. Department of Energy [1]. The winner was selected based on two metrics: a threshold value expressing the benefit to effort ratio (ACE metric) and a second metric which included hydrodynamic performance-related quantities (HPQ). HPQ required additional sea states to query aspects of the techno-economic performance not addressed by ACE. Due to the nature of the WEPrize, limited time was allotted to each contestant for testing and thus a limitation on the total sea states was required. However, the applicability of these sea states was required to encompass seven deployment locations representative of the United States West Coast and Hawaii. A cluster analysis was applied to scatter diagrams in order to determine a subset of sea states that could be scaled to find the average annual power flux at each wave climate for the ACE metric. Four additional sea states were selected, including two highly energetic sea states and two bimodal sea states, to evaluate HPQ. These sea states offer a common experimental testing platform for performance in United States deployment climates.

More Details

Model Test Bed for Evaluating Wave Models and Best Practices for Resource Assessment and Characterization

Neary, Vincent S.; Yang, Zhaoqing; Wang, Taiping; Gunawan, Budi G.; Dallman, Ann R.

A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending on the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.

More Details

Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states

Ocean Engineering

Eckert, Aubrey C.; Sallaberry, Cedric J.; Dallman, Ann R.; Neary, Vincent S.

Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. These modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.

More Details

Characterization of U.S. Wave Energy Converter (WEC) test sites: a catalogue of met-ocean data (Second edition)

Dallman, Ann R.; Neary, Vincent S.

This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer’s device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Specification (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

More Details

Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data

Dallman, Ann R.; Neary, Vincent S.

This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

More Details

Investigation of Spatial Variation of Sea States Offshore of Humboldt Bay CA Using a Hindcast Model

Dallman, Ann R.; Neary, Vincent S.

Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season. The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.

More Details

Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States

Eckert, Aubrey C.; Sallaberry, Cedric J.; Dallman, Ann R.; Neary, Vincent S.

Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours. In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters

More Details
Results 26–41 of 41
Results 26–41 of 41