Publications

45 Results

Search results

Jump to search filters

A Forward Analytic Model of Neutron Time-of-Flight Signals for Inferring Ion Temperatures from MagLIF Experiments

Fusion Science and Technology

Weaver, Colin; Cooper, Gary; Perfetti, Christopher; Ampleford, David J.; Chandler, Gordon A.; Knapp, P.F.; Mangan, Michael A.; Styron, Jedediah

A forward analytic model is required to rapidly simulate the neutron time-of-flight (nToF) signals that result from magnetized liner inertial fusion (MagLIF) experiments at Sandia’s Z Pulsed Power Facility. Various experimental parameters, such as the burn-weighted fuel-ion temperature and liner areal density, determine the shape of the nToF signal and are important for characterizing any given MagLIF experiment. Extracting these parameters from measured nToF signals requires an appropriate analytic model that includes the primary deuterium-deuterium neutron peak, once-scattered neutrons in the beryllium liner of the MagLIF target, and direct beamline attenuation. Mathematical expressions for this model were derived from the general-geometry time- and energy-dependent neutron transport equation with anisotropic scattering. Assumptions consistent with the time-of-flight technique were used to simplify this linear Boltzmann transport equation into a more tractable form. Models of the uncollided and once-collided neutron scalar fluxes were developed for one of the five nToF detector locations at the Z-Machine. Numerical results from these models were produced for a representative MagLIF problem and found to be in good agreement with similar neutron transport simulations. Twenty experimental MagLIF data sets were analyzed using the forward models, which were determined to only be significantly sensitive to the ion temperature. The results of this work were also found to agree with values obtained separately using a zero scatter analytic model and a high-fidelity Monte Carlo simulation. Inherent difficulties in this and similar techniques are identified, and a new approach forward is suggested.

More Details

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David J.; Weis, Matthew R.; Myers, Clayton; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael A.; Knapp, P.F.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Foulk, James W.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

An Evaluation of Bang-Time Measurements from a Multichannel, Triaxial, nTOF Diagnostic for MagLIF Experiments at the Z facility

Ruiz, Carlos L.; Fehl, D.L.; Chandler, Gordon A.; Cooper, Gary; Jones, Brent M.; Styron, Jedediah D.; Torres, Jose

Neutron bang times for a series of MagLIF (Magnetic Liner Inertial Fusion) experiments with D2-filled targets have been measured at the Z facility. The emitted neutrons were detected as current-mode pulses in a multichannel, neutron time-of-flight (nTOF) diagnostic with conventional, scintillator-photomultiplier-tube (PMT) detectors. In these experiments, the detectors were fielded at known, fixed distances L (690-2510 cm) from the target, and on three, non-coplanar (but convergent) lines-of-sight (LOS). The primary goal of this diagnostic was to estimate a fiducial time (bang time) relative to an externally generated time-base for synchronizing all the diagnostics in an experiment. Recorded arrival times (A7) of the pulses were characterized experimentally by three numerical methods: a first-moment estimate (centroid) and two nodal measures — Savitzky-Golay (SG) smoothing and a single point peak estimate of the raw data. These times were corrected for internal detector time delays (transit and impulse-response function) — an adjustment that linked the recorded ATs to the corresponding arrival of uncollided neutrons at each detector. The bang time was then estimated by linearly regressing the arrival times against the associated distances to the source; tbang (on the system timescale) was taken as the temporal intercept of the regression equation at distance L = 0. This article reports the analysis for a representative shot #2584 for which (a) the recorded ATs — even without detector corrections — agreed by method in each channel to within 1-2 ns; (b) internal corrections were each ~3 — 5 ns; and (c) a 95% uncertainty (confidence) interval for tbang in this shot was estimated at ±3 ns with 4 degrees of freedom. A secondary goal for this diagnostic was to check that the bang time measurements corresponded to neutrons emitted by the D(d,n)3He reaction in a thermalized DD plasma. According to the theoretical studies by Brysk, such neutrons should be emitted with an isotropic Gaussian distribution of mean kinetic energy $ \overline{E}$ of 2.449 MeV; this energy translates to a mean neutron speed $ \overline{u}$ of 2.160 cm/ns [D. H. Munro, Nuclear Fusion, 56(3) 036001 (2016)]. In the MagLIF series of shots there was no evidence of spatial asymmetry in the time-distance regressions, and it was possible to extract the mean neutron speed from the slope of these fits. In shot 2584 $ \overline{u}$ was estimated at 2.152 cm/ns ± 0.010 cm/ns [95 % confidence, 4 dof] and the mean kinetic energy $ \overline{E}$ (with relativistic corrections) was 2.431 MeV ± 0.022 MeV [95 % confidence, 4 dof] — results supporting the assumption that D-D neutrons were, in fact, measured.

More Details

Neutron Diagnostic Development fro the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Jones, Brent M.; Gomez, Matthew R.; Knapp, P.F.; Sefkow, Adam B.; Hansen, Stephanie B.; Schmit, Paul; Harding, Eric H.; Norris, Edward T.; Torres, Jose; Cooper, Gary; Styron, Jedediah D.; Glebov, V.Y.; Frenje, J.; Lahmann, B.; Gatu-Johnson, M.; Seguin, F.; Petrasso, R.; Fittinghoff, D.; May, M.; Snyder, L.; Moy, K.; Buckles, R.

Abstract not provided.

Overview of Neutron diagnostic measurements for MagLIF Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

DIAGNOSING MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS USING NEUTRON DIAGNOSTICS ON THE Z ACCELERATOR

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

Journal of Physics: Conference Series

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrman, M.C.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

More Details

SNL perspective on the nTOF workshop

Jones, Brent M.; Hahn, Kelly; Ruiz, Carlos L.; Chandler, Gordon A.; Fehl, David L.; Lash, Joel S.; Knapp, P.F.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Mcpherson, Leroy A.; Nelson, Alan J.; Rochau, G.A.; Schmit, Paul; Sefkow, Adam B.; Sinars, Daniel; Torres, Jose; Bur, James A.; Cooper, Gary; Bonura, Michael; Long, Joel; Styron, Jedediah D.; Buckles, Rob; Garza, Irene; Moy, Kenneth J.; Davis, Brent; Tinsley, Jim; Tiangco, Rod; Miller, Kirk; Mckenna, Ian

Abstract not provided.

Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator

Mcbride, Ryan; Bliss, David E.; Gomez, Matthew R.; Hansen, Stephanie B.; Martin, Matthew R.; Jennings, Christopher A.; Slutz, Stephen A.; Rovang, Dean C.; Knapp, P.F.; Schmit, Paul; Awe, Thomas J.; Hess, Mark H.; Lemke, Raymond W.; Foulk, James W.; Lamppa, Derek C.; Jobe, Marc R.L.; Fang, Lu; Hahn, Kelly; Chandler, Gordon A.; Cooper, Gary; Ruiz, Carlos L.; Robertson, G.K.; Cuneo, Michael E.; Sinars, Daniel; Tomlinson, Kurt; Smith, Gary; Paguio, Reny; Intrator, Tom; Weber, Thomas; Greenly, John

We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing and fabricating novel micro B-dot probes to measure B z ( t ) inside of an imploding liner. In one approach, the micro B-dot loops were fabricated on a printed circuit board (PCB). The PCB was then soldered to off-the-shelf 0.020- inch-diameter semi-rigid coaxial cables, which were terminated with standard SMA connectors. These probes were recently tested using the COBRA pulsed power generator (0-1 MA in 100 ns) at Cornell University. In another approach, we are planning to use new multi-material 3D printing capabilities to fabricate novel micro B-dot packages. In the near future, we plan to 3D print these probes and then test them on the COBRA generator. With successful operation demonstrated at 1-MA, we will then make plans to use these probes on a 20-MA Z experiment.

More Details

Fusion-Neutron Measurements for Magnetized Liner Inertial Fusion Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Effects of magnetization on fusion product trapping and secondary neutron spectra

Physics of Plasmas

Knapp, P.F.; Schmit, Paul; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly; Sinars, Daniel; Peterson, K.J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Geissel, Matthias; Harvey-Thompson, Adam J.; Porter, John L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

More Details

Diagnosing magnetized liner inertial fusion experiments on Z

Physics of Plasmas

Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Awe, Thomas J.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Schroen, D.G.; Tomlinson, K.; Ryutov, D.

Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

More Details

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark C.; Hess, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger A.

In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Peterson, K.J.; Porter, John L.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Z facility diagnostic system for high energy density physics at Sandia National Laboratories

Leeper, Ramon J.; Deeney, Christopher D.; Dunham, G.S.; Fehl, David L.; Franklin, James K.; Hanson, David L.; Hawn, Rona E.; Hall, Clint A.; Hurst, Michael J.; Jinzo, Tanya D.; Jobe, Daniel O.; Joseph, Nathan; Knudson, Marcus D.; Lake, Patrick; Lazier, Steven E.; Lucas, Joshua; McGurn, John S.; Manicke, Matthew P.; Mock, Raymond; Moore, Tracy C.; Nash, Thomas J.; Bailey, James E.; Nelson, Alan J.; Nielsen, D.S.; Olson, Richard E.; Porter, John L.; Pyle, John H.; Rochau, G.A.; Ruggles, Larry; Ruiz, Carlos L.; Sanford, Thomas W.L.; Seamen, Johann F.; Bennett, Guy R.; Simpson, Walter W.; Sinars, Daniel; Speas, Christopher S.; Stygar, William A.; Torres, Jose; Wenger, D.F.; Carlson, Alan L.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.

Abstract not provided.

Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies

Mehlhorn, Thomas A.; Leeper, Ramon J.; Macfarlane, Joseph J.; Matzen, M.K.; Nash, Thomas J.; Olson, Craig L.; Porter, John L.; Ruiz, Carlos L.; Schroen, Diana G.; Slutz, Stephen A.; Varnum, William S.; Vesey, Roger A.; Bailey, James E.; Bennett, Guy R.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Hanson, David L.

Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a {approx}220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6 {+-} 1.3) x 10{sup 10}. Argon spectra confirm a hot fuel with Te {approx} 1 keV and n{sub e} {approx} (1-2) x 10{sup 23} cm{sup -3}. Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a {approx}70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P{sub 2} radiation asymmetries to {+-}2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL.

More Details
45 Results
45 Results