Publications Details
Microstructure-Based Modeling of Laser Beam Shaping During Additive Manufacturing
Moore, Robert M.; Orlandi, Giovanni; Rodgers, Theron R.; Moser, Daniel M.; Murdoch, Heather; Abdeljawad, Fadi
Recent experimental studies suggest the use of spatially extended laser beam profiles as a strategy to control the melt pool during laser powder bed fusion (LPBF) additive manufacturing. However, linkages connecting laser beam profiles to thermal fields and resultant microstructures have not been established. Herein, we employ a coupled thermal transport-Monte Carlo model to predict the evolution of temperature fields and grain microstructures during LPBF using Gaussian, ring, and Bessel beam profiles. Simulation results reveal that the ring-shaped beam yields lower temperatures compared with the Gaussian beam. Owing to the small melt pool size when using the Bessel beam, the grains are smaller in size and more equiaxed compared to those using the Gaussian and ring beams. Our approach provides future avenues to predict the impact of laser beam shaping on microstructure development during LPBF.