Sandia’s Ion Beam Laboratory

Ion Beam Analysis (IBA)

Radiation Effects Microscopy (REM)

Ion Beam Modification (IBM)

In situ Ion Irradiation Transmission Electron Microscopy (I³TEM)
Overview
Overview

Ion Beam Analysis
- **The basic concept:** A charged particle interacts with a material and one of a variety of signals produced gives information on the local chemistry and structure.
- Each beam has associated benefits and limitations.

Radiation Effects Testing
- Space and other nuclear environments demand radiation hardness.
- Can simulate radiation damage from a single ion strike to up to 500 dpa.

Ion Beam Modification
- **The basic concept:** Alteration of the structure through ion beam interactions.
 - Implantation of dopants
 - Sputtering of material
 - Decomposition of gasses

In-situ Ion Irradiation Transmission Electron Microscopy
- **The basic concept:** Characterization of materials exposed to various types of particle bombardment in real-time, at the nanoscale.
- Current capabilities include:
 - Heating
 - Straining
 - Tomography

IBA, radiation effect testing, and ion beam modification are all widely used in research and industry.

http://www.pbeam.com
In Situ Transmission Electron Microscopy (I3TEM)

Characterization of materials exposed to various types of particle bombardment in real time, at the nano scale

The IBL is one of only 11 facilities worldwide with this capability.
In situ Ion Irradiation TEM (I³TEM)

Proposed Capabilities

- 200 kV LaB₆ TEM
- Ion beams considered:
 - 1 MeV H⁺
 - 3 MeV He⁺, Si³⁺, Cu³⁺, Au³⁺, W³⁺
 - 14 MeV Si³⁺
 - 10 keV D²⁺
 - 10 keV He⁺
- All beams hit the same location
- Electron tomography
- Nanosecond time resolution (DTEM)
- Precession scanning (EBSD in TEM)
- **In situ** PL, CL, and IBIL
- **In situ** heating and cooling stages
- **In situ** electrical measurement stage
- **In situ** quantitative mechanical testing
- **In situ** vapor phase stage
- **In situ** liquid mixing stage

We have completed the Tandem accelerator connection and Colutron accelerator connection.

Many potential additions are being considered.
Current Status of the *In situ* TEM Beamline

I³TEM is operational, but also still in development.

- **Double tilt stage needs to tilt only 12°**
- **10 kV Colutron**
- **6 MV Tandem**
- **Bending Magnet to Mix Beams**
- **Vibration Isolations**
- **Pre-TEM Coupon Irradiation Chamber**
- **Faraday Cup and Viewing Screen**
- **Microfluidic Holder Beam Burn**

Beam burn from 14 MeV Si

Collaborators: D.L. Buller & J.A. Scott
Can We Gain Insight into the Corrosion Process through *In situ* TEM?

Microfluidic Stage
- Mixing of two or more channels
- Continuous observation of the reaction channel
- Chamber dimensions are controllable

Cross-sectional schematic

Pitting mechanisms during dilute flow of acetic acid over 99.95% nc-PLD Fe involves many grains. Large grains resulting from annealing appear more corrosion tolerant.
Other Fun Uses of Microfluidic Cell

Protocell Drug Delivery
S. Hoppe, E. Carnes, J. Brinker

Liposome encapsulated Silica destroyed by the electron beam

BSA Crystallization
S. Hoppe

Crystallization of excess Bovine Serum Albumen during flow

Liposomes in Water
S. Hoppe, D. Sasaki

Liposomes imaged in flowing aqueous channel

La Structure Formation
S. Hoppe, T. Nenoff

La Nanostructure form from LaCl$_3$ H$_2$O in wet cell due to beam effects
Radiation Tolerance is Needed in Advanced Scintillators for Non-proliferation Applications

In situ Ion Irradiation TEM (I^3TEM)

High-Z nanoparticles (CdWO₄) are promising, but are radiation sensitive

Tomography of Irradiated CdWO₄:
3 MeV Cu³⁺ at ~30 nA

Contributors: S.M. Hoppe, B.A. Hernandez-Sanchez, T. Boyle
In situ TEM Quantitative Mechanical Testing

Radiation effect on mechanical properties
- Direct correlation of dose and defect density with resulting change in strength and ductility
- Failure of Mo-wire after 3 MeV Cu irradiation

Contact and fatigue effect on structure
- Associate change in local hardness and fatigue with corresponding nanostructure
- Indent and Fatigue of nanocrystalline Cu film

Fundamentals of contact reliability
Can *In situ* TEM Address Hydrogen Storage Concerns in Extreme Environments?

Vapor-Phase Heating TEM Stage

- Compatible with a range of gases
- *In situ* resistive heating
- Continuous observation of the reaction channel
- Chamber dimensions are controllable
- Compatible with MS and other analytical tools

Harmful effects may be mitigated in nanoporous Pd

New *in situ* atmospheric heating experiments provide great insight into nanoporous Pd stability