Sandia LabNews

New research: Metal-organic frameworks mop up radioactive gases from spent nuclear fuel


Sandia chemist Tina Nenoff heads a team of researchers focused on removal of radioactive iodine from spent nuclear fuel. They identified a metal-organic framework that captures and holds the volatile gas, a discovery that could be used for nuclear fuel reprocessing and other applications. (Photo by Randy Montoya)


Research by a team of Sandia chemists could impact worldwide efforts to produce clean, safe nuclear energy and reduce radioactive waste.

The Sandians used metal-organic frameworks (MOFs) to capture and remove volatile radioactive gas from spent nuclear fuel. “This is one of the first attempts to use a MOF [pronounced “MOF,” not as initials] for iodine capture,” says team lead Tina Nenoff (1114) of Sandia’s Surface and Interface Sciences Department.

The discovery could be applied to nuclear fuel reprocessing as well as to cleanup from nuclear reactor accidents. A characteristic of nuclear energy is that used fuel can be reprocessed to recover fissile materials and provide fresh fuel for nuclear power plants. Countries such as France, Russia, and India are reprocessing spent fuel.

The process also reduces the volume of high-level wastes, a key concern of the Sandia researchers. “The goal is to find a methodology, to line things up so less waste is interred,” Tina says.

Part of the challenge of reprocessing is to separate and isolate components that are not burnable fuel but are radioactive. Tina took knowledge from her early Sandia research into materials for cleanup of nuclear waste from the Cold War and applied it to gas separations for nuclear fuel reprocessing.

The Sandia researchers are part of the Off-Gas Sigma Team, which is led by Oak Ridge National Laboratory and studies waste form capture of volatile gases associated with nuclear fuel reprocessing. Tina’s team is focused on removing iodine, whose isotopes have a half-life of 16 million years, from spent fuel. Other volatile gases of interest include krypton, tritium, and carbon, and are being looked at by other members of the Off-Gas Sigma Team — Pacific Northwest, Argonne, and Idaho national laboratories.

The Sandians studied known materials, including silver-loaded zeolite, a crystalline, porous mineral with regular pore openings, high surface area, and high mechanical, thermal, and chemical stability. Various zeolite frameworks can trap and remove iodine from a stream of spent nuclear fuel, but need added silver to work well. “Silver attracts iodine to form silver iodide,” Tina says. “The zeolite holds the silver in its pores and then reacts with iodine to trap silver iodide.”

But silver is expensive and there are environmental issues, so the team set out to engineer materials that would work like zeolites but have higher capacity for the gas molecules, and not need silver. They explored why and how zeolite absorbs iodine, and used the critical components discovered to find the best MOF, in this case named ZIF-8.

“We studied materials that are known, like the zeolite mordenite, and made new materials,” Tina says. “We investigated the structural properties on how they work and translated that into new and improved materials.”

MOFs are crystalline, porous materials in which a metal center is bound to organic molecules by mild self-assembly chemical synthesis. The choice of metal and organic result in a very specific final framework.

‘Making the hole round’

The trick was to find a MOF highly selective for iodine. The Sandians took the best elements of zeolite Mordenite — its pores, high surface area, stability, and chemical absorption — and identified a MOF that can separate one molecule, in this case iodine, from a stream of molecules. The MOF and pore-trapped iodine gas can then be incorporated into a glass waste form for use in long-term storage.

“We’ve shown that MOFs have the capacity to capture and, more importantly, retain many times more iodine than current materials technologies,” says team member Karena Chapman of Argonne National Laboratory. She added that the iodine can also be trapped by pressure treating the MOF to change the dimensions of its entry/exit apertures. “This process could be compared to putting a square peg through a square hole then making the hole round,” Chapman says.

The Sandia team also fabricated MOFs, made of commercially available products, into durable pellets. The as-made MOF is a white powder with a tendency to blow around. The pellets provide a stable form to use without loss of surface area, Tina says.

Sandia has filed for a patent on the pellet technology, which could have commercial applications. “We figured out a binderless process to make industrially relevant pellets,” Tina says.

The project began six years ago and the Sigma Team was formalized in 2009. It is funded by the DOE Office of Nuclear Energy. Tina has been involved from the beginning, tapping a background in nuclear weapons cleanup. She has been at Sandia 18 years and previously worked on removal of radiological ions from liquid tanks.

Seeking capture and removal solutions.

“Over the years, through my career, I’ve gone back to working on materials associated with separations and waste forms for radiological elements,” she says.

The Sigma Team is seeking capture and removal solutions for all the volatile gases involved in reprocessing. Sandia’s iodine and MOFs research was featured in two recent articles in the Journal of the American Chemical Society authored by Tina and team members Dorina Sava (1114), Mark Rodriguez (1822), Jeffery Greathouse (6915), Paul Crozier (1426), Terry Garino (1816), David Rademacher (1114), Ben Cipiti (6223), Haiqing Liu (1114), Greg Halder, Peter Chupas, and Chapman. Chupas, Halder, and Chapman are from Argonne.

“The most important thing we did was introduce a new class of materials to nuclear waste remediation,” says Dorina, postdoctoral appointee on the project. She joined the team 18 months ago from the University of South Florida, where she did graduate work on such materials.

Tina says a third paper was published this year in Industrial & Engineering Chemistry Research that shows the incorporation of MOFs with iodine in a one-step process, low-temperature glass waste form. “We have a volatile off-gas capture using a MOF and we have a durable waste form,” Tina says.

She and her colleagues are continuing their research into new and optimized MOFs for enhanced volatile gas separation and capture. “We are looking at a broad range of materials and learning from them to make new materials,” Tina says.