

SANDIA REPORT
SAND2020-11393 O
Printed October 2020

GeoTess User’s Manual: Version 2.6

Sanford Ballard, James R. Hipp, Brian Kraus, Andrea Conley, Patrick Hammond

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@osti.gov
 Online ordering: http://www.osti.gov/scitech

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5301 Shawnee Rd
 Alexandria, VA 22312

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.gov
 Online order: https://classic.ntis.gov/help/order-methods/

3

ABSTRACT
GeoTess is a model parameterization for multi-dimensional Earth models and an extendable
software system that implements the construction, population, storage and interrogation of data
stored in the model. A constructed GeoTess model will be comprised of 2D triangular tessellations
of a unit sphere with 1D radial arrays of nodes associated with each vertex of the 2D tessellations.
Variable spatial resolution in both geographic and radial dimensions is supported. Users have
considerable flexibility in how to define the data stored on the grid. The GeoTess software is
available on the web at:

http://www.sandia.gov/geotess/

The software is packaged with this user’s manual and a set of example scripts.

4

This page left blank.

5

CONTENTS
1. Introduction ... 9
2. Model Components ... 11
3. Library Interactions ... 15

3.1. Model population .. 15
3.1.1. Step 1 – Specify MetaData ... 15
3.1.2. Step 2 – Construct a Model ... 16
3.1.3. Step 3 – Add Data ... 16

3.2. Model I/O .. 17
3.3. Model interrogation .. 18

3.3.1. Grid Information ... 18
3.3.2. Accessing Data Stored in the Model .. 18
3.3.3. Interpolating Attribute Values at Arbitrary Locations ... 19

3.4. Extending GeoTess .. 20
4. GeoTessBuilder ... 21

4.1. GeoTessBuilder Properties File .. 21
4.1.1. Model Refinement Mode ... 22
4.1.2. Construction-From-Scratch Mode ... 22

4.2. GeoTessBuilder Examples ... 24
4.2.1. Example 1 ... 24
4.2.2. Example 2 ... 25
4.2.3. Example 3 ... 26
4.2.4. Example 4 ... 27

5. Polygons .. 29
6. Great circles .. 33
7. Ellipsoids ... 35
8. Manipulation of Geographic Locations on an Ellipsoidal Earth ... 36

8.1. Distance between two points .. 38
8.2. Azimuth from one point to another .. 39
8.3. Points on a great circle ... 39
8.4. Finding a new point some distance and azimuth from another point 39

9. GeoTessExplorer... 41
10. Installation Instructions .. 45

10.1. Setup .. 45
10.2. Build Environments .. 45
10.3. Makefile Usage ... 45
10.4. Makefile Results ... 46
10.5. Makefile Production .. 46

11. C Shell .. 49
11.1. Headers ... 49
11.2. Naming Conventions .. 49
11.3. C Shell Source .. 50

11.3.1. Exception Handling .. 50
11.3.2. Data Structures... 50

6

11.3.3. GeoTess Objects ... 50
11.4. File formats .. 51
11.5. Binary Format .. 51

11.5.1. Binary Model File .. 51
11.5.2. Binary Profile Objects ... 53
11.5.3. Binary Data Objects .. 54
11.5.4. Binary Grid Files .. 55

11.6. ASCII Format .. 56
11.6.1. ASCII Model Files ... 56
11.6.2. ASCII Profile Objects ... 58
11.6.3. ASCII Data Objects .. 59
11.6.4. ASCII Grid Files .. 60

LIST OF FIGURES
Figure 2-1. Comparison of a regular latitude longitude grid and a uniform triangular tessellation.

In both grids the edge lengths are approximately 4°. .. 11
Figure 2-2. A slice through a portion of a global 3D P velocity model. The model consists of a

number of layers, such as the Inner Core, Outer Core, etc. Each layer is associated with a
separate multi-level tessellation, providing variable resolution in the radial direction. Profiles
are defined as a set of nodes, all within a single layer of the model, positioned along a line
with constant geographic position. Note the variable resolution in the geographic dimensions
in the upper mantle. .. 12

Figure 2-3. Construction of a multi-level tessellation by iterative subdivision of triangles. Each
image represents one level and together the levels comprise a single multi-level tessellation. 13

Figure 4-1. Three multi-level tessellations generated by example 1. The tessellations have triangle
sizes of approximately 32°, 16°, and 4°. Each image shows only the top level of the
corresponding multi-level tessellation. These multi-level tessellations are all components of a
single GeoTessGrid object, stored in a single GeoTessGrid output file. The continental
outlines are for illustrative purposes only and are not part of the GeoTessGrid object. 25

Figure 4-2. Top level of the multi-level tessellation generated by example 2. Most of the triangles
shown have edge lengths of approximately 8° but triangles near the refinement point are as
small as ⅛°. ... 26

Figure 4-3. (left) The trace of the mid-Atlantic Ridge as viewed with Google Earth. (right) Top
level of the multi-level tessellation generated by example 3. Most of the triangles shown have
edge lengths of approximately 8° but triangles that span the mid-Atlantic Ridge have triangles
with edge lengths about 1°. .. 27

Figure 4-4. (left) Polygons generated and viewed with Google Earth. (right) Top level of the
multi-level tessellation generated by example 4. Triangles far from the conterminous US have
edge lengths of approximately 8° but triangles with at least one corner inside the polygon
surrounding the US have triangles with edge lengths about 1°. Triangles with a corner in the
polygon defining the state of New Mexico have edge lengths of approximately ⅛°. 28

Figure 8-1. Earth centered coordinate system. v0 points from the center of the Earth towards the
point on the surface with latitude and longitude 0°, 0°; v1 points toward latitude, longitude 0°,
90° and v2 points toward the north pole. ... 36

Figure 8-2. An exaggerated ellipsoid illustrating the difference between geographic latitude, j’,
and geocentric latitude, j. .. 37

7

Figure 8-3. (top) Comparison of geographic and geocentric latitudes for the GRS80 ellipsoid.
(bottom) km per degree and Earth radius as a function of geocentric latitude. 38

Figure 8-4. Calculation of w given u and v. All vectors are of unit length and lie entirely in the
plane of the figure. ... 39

Figure 8-5. Start at point p, located at latitude, longitude 45°, 0°. Find a new point u δ = 20°
north of p. Then rotate u φ = 235° around p to position w. Note that
Ðpu = Ðpw = δ = 20°. .. 40

LIST OF TABLES
Table 7-1. Ellipsoids Supported by GeoTess. .. 35
Table 11-1. Description of Binary Model Format Parameters. ... 51
Table 11-2. ProfileEmpty – Profile Object Consisting of a Bottom and Top Radius but no Data. ... 53
Table 11-3. ProfileThin – Profile Object that Represents a Zero-Thickness Profile. 53
Table 11-4. ProfileConstant – A Finite Thickness Profile Characterized by a Single Data Object. ... 54
Table 11-5. ProfileNPoints – A Profile Object Comprised of Two or More Radii and an Equal

Number of Data Objects. .. 54
Table 11-6. ProfileSurface – A Profile Object that Represents Data, but no Radius 54
Table 11-7. Description of Binary Grid File Parameters. .. 55
Table 11-8. Description of ASCII Model File Parameters. ... 56
Table 11-9. ProfileEmpty – Profile Object Consisting of a Bottom and Top Radius but no Data. ... 58
Table 11-10. ProfileThin – Profile Object that Represents a Zero-Thickness Profile. 58
Table 11-11. ProfileConstant – A Finite Thickness Profile Characterized by a Single Data Object. . 59
Table 11-12. ProfileNPoints – A Profile Object Comprised of Two or More Radii and an Equal

Number of Data Objects. .. 59
Table 11-13. ProfileSurface – A Profile Object that Represents Data, but no Radius. 59
Table 11-14. Description of ASCII Grid File Parameters. .. 60

8

ACRONYMS AND DEFINITIONS

Abbreviation Definition

1D One dimensional

2D Two dimensional

3D Three dimensional

I/O Input/Output

IERS International Earth Rotation and Reference Systems Service Ellipsoid

IERS_RCONST
International Earth Rotation and Reference Systems Service Ellipsoid, Constant
Radius

GRS80 Geodetic Reference System 1980 Ellipsoid

GRS80_RCONST Geodetic Reference System 1980 Ellipsoid, Constant Radius

WGS84 World Geodetic System 1984 Ellipsoid

WGS84_RCONST World Geodetic System 1984 Ellipsoid, Constant Radius

9

1. INTRODUCTION
GeoTess is a model parameterization for multi-dimensional Earth models and an extendable
software system that implements the construction, population, storage and interrogation of data
stored in the model. GeoTess is not limited to any particular type of data; to GeoTess, the data are
just 1D arrays of values associated with each node in the grid.

Users can interact with GeoTess in several ways: Applications can access GeoTess as a library. In
this mode of interaction, applications can perform the following tasks:

• Read grids and models from, and write them to, files in ascii and binary formats.

• Query a model grid for information about the nodes, cells or tessellations.

• Associate data structures with the nodes of the geometry.

• Query the model for the data associated with a specified node.

• Modify the data associated with a node.

• Find arbitrary positions within the grid hierarchy (point searching).

• Retrieve the interpolation coefficients at arbitrary locations in space. GeoTess currently
implements linear and natural neighbor interpolation algorithms.

• Interpolate data values at arbitrary positions using the interpolation coefficients described
above.

• Given a sequence of points that defines a ray path through a model, retrieve the weights
(data kernels) associated with the grid nodes in the model that were influenced by the ray
path.

These functions are described more fully in the section Library Interactions below. Complete
interface documentation for every publicly accessible function in the library is provided for each
language, in html format. To locate the documentation, visit the GeoTess website or search the
GeoTess directory tree for the directory for the desired computer language. Within that directory
will be a file called source_code_documentation.html that will lead to the desired information.

The GeoTess library is available in Java and C++ with a C interface to the C++ library. Source
code and Makefiles are provided and precompiled binaries are included for Linux, Mac OSX and
Windows operating systems. Makefiles are also included for SunOS, but this operating system is no
longer supported.

In addition to accessing GeoTess through its libraries, two applications are provided: GeoTessExplorer
implements extraction of data from a GeoTessModel as boreholes, maps, and 3D blocks, as well as
a few other utility-type functions. GeoTessBuilder implements the construction of variable resolution
2D triangular tessellations. These applications are described more fully in separate sections below.

10

This page left blank.

11

2. MODEL COMPONENTS
While many Earth models use regular latitude longitude grids to describe the geographic geometry
and topology, GeoTess uses a triangular tessellation. These two approaches are compared in Figure
2-1. While software algorithms that use regular latitude longitude grids are much more
straightforward to develop, the grids suffer from severe unintended variability in cell areas, with cell
areas approaching zero near the poles. Software for triangular tessellations, on the other hand, is
somewhat more complicated to develop but results in grids with much more uniform cell size and
approximately 25% fewer vertices.

Figure 2-1. Comparison of a regular latitude longitude grid and a uniform triangular tessellation.

In both grids the edge lengths are approximately 4°.

A GeoTess model is comprised of the following elements:
• A set of layers (Figure 2-2). Each layer spans the entire 2D geographic extent of the model.

The boundaries at the top and bottom of a layer may have topography. Within each layer,
model data values are continuous, both geographically and radially. Model data values may
be discontinuous across layer boundaries. Layers may have zero thickness at some or all
geographic locations. An important limitation of the parameterization used by GeoTess is
that layer boundaries may not fold back on themselves, i.e., any radial line emanating from
the center of the Earth must intersect each layer boundary exactly one time.

• A set of multi-level tessellations (Figure 2-3). Each layer will be associated with one multi-
level tessellation but many layers may be associated with each multi-level tessellation, i.e.,
there is a many-to-one relationship between layers and multi-level tessellations. By
associating layers that are deep in the Earth with low resolution multi-level tessellations and
layers at shallower levels in the Earth with higher resolution multi-level tessellations, the
resolution of the model can be varied radially as necessary to achieve more appropriate
sampling.

12

Figure 2-2. A slice through a portion of a global 3D P velocity model. The model consists of a

number of layers, such as the Inner Core, Outer Core, etc. Each layer is associated with a separate
multi-level tessellation, providing variable resolution in the radial direction. Profiles are defined as

a set of nodes, all within a single layer of the model, positioned along a line with constant
geographic position. Note the variable resolution in the geographic dimensions in the upper

mantle.

• The topology of each multi-level tessellation will consist of a set of levels (see Figure 2-3), with
each level consisting of a set of triangles that spans the surface of a unit sphere, without gaps
or overlaps. The triangles on a given tessellation level are obtained by subdivision of the
triangles on the previous tessellation level, with the first tessellation level being an
icosahedron. Each multi-level tessellation may have variable resolution in the geographic
dimensions (i.e. the triangles can be subdivided into smaller triangles arbitrarily). Note the
variable resolution of the final tessellation level in the bottom right panel.

• The geometry of each multi-level tessellation will consist of a set of vertices that defines the
positions of the corners of the triangles. If a model is comprised of more than one multi-
level tessellation, they will share common vertices, to the extent possible.

• Data arrays. Each data array is a 1D array of data values that may be of type double, float,
long, int, short or byte. All the data arrays in the model must be of the same type and must
have the same number of elements.

13

Figure 2-3. Construction of a multi-level tessellation by iterative subdivision of triangles. Each
image represents one level and together the levels comprise a single multi-level tessellation.

• Profiles. Each profile is composed of a set of monotonically increasing radii and a set of data
arrays. Each profile is associated with a single vertex and a single layer in the model. The
first and last radii in a profile define the bottom and top of the associated layer at the
geographic position of the vertex. Several types of profiles are supported:

o N-Point profiles consist of two or more radii and an equal number of data arrays,
with one data array associated with each radius.

o Constant value profiles consist of two radii and a single data array that defines the
data values for the entire radial span of the profile.

o Thin profiles consist of a single radius and a single data array. They have zero
thickness, i.e., the radius of the bottom and top of the profile are equal.

o Empty profiles consist of two radii but no data arrays.

o Surface profiles consist of only a single data array. They have no radius values.
Together with Empty Surface profiles, these are used to support 2D models. Surface
profiles are incompatible with all other profile types. If a model contains any surface
profiles, it cannot contain any profiles of any other type.

o Empty Surface profiles consist of no radii and no data.

14

The data values within a profile are continuous.
• A 2D array of Profiles with nVertices × nLayers elements. The first index refers to one of the

vertices of the model geometry and the second index refers to one of the layers of the
model. For a given vertex index, the 1D array of profiles contains a profile for each layer of
the model, stored in order of increasing radius. The last radius of each profile in a 1D
profile array must be equal to the first radius of the next profile in the same 1D profile array.
While the data values within a single profile are continuous, data values may be
discontinuous across profile (i.e. layer) boundaries.

• Radial interpolators that interpolate data values within an individual profile. These include
linear interpolators, cubic spline interpolators, and potentially others.

• 2D interpolators that interpolate values in the 2 geographic dimensions. These include linear
interpolators that interpolate values within a single triangle of the 2D tessellations, and
higher order interpolators that provide continuous spatial derivatives of the data values.

• (2+1)D interpolators that combine 1D and 2D interpolators to interpolate data in 3D. They
first use a 1D interpolator to interpolate values at a specified radius in a neighborhood of
profile arrays, and then apply a 2D interpolator to those values to find an interpolated value
at the desired 3D location.

Referencing Data objects is complicated by the fact that a particular Data object has a node index
within a Profile which in turn is associated with a vertex and a layer. The following definitions are
relevant:

• Vertex – refers to a point in a 2D triangular tessellation where multiple triangles intersect.
Each vertex is represented internally by a unit vector whose origin resides at the center of
the earth, x-component points to lat , lon = 0°N, 0°E, y-component points to lat, lon =
0°N, 90°E, and z component points to the north pole. A vertex has no information about
radial position in the model. Functions are provided in GeoTessUtils to convert back and
forth between unit vectors and geographic latitude and longitude.

• Node - refers to a Data object associated with a Profile. Nodes within a Profile are stored in
order of increasing radius. Every Profile has a node with index 0 which is the node with the
smallest radius.

• Point -To facilitate indexing the Data objects in a model, the term point is introduced. A point
is conceptually a triplet of indexes including the vertex index, the layer index and node index.
Applications can refer to Data objects in a model either by their pointIndex or by the
combination of vertexIndex, layerIndex and nodeIndex. Each model maintains a PointMap
object to manage this capability.

15

3. LIBRARY INTERACTIONS
In this section, general information is provided about how to accomplish some of the most
important functions implemented by the GeoTess library. Not all functions are described here.
Complete interface documentation for every publicly accessible function in the library is provided
for each language, in html format. To locate the documentation, visit the GeoTess website or
search the GeoTess directory tree for the directory for the desired computer language. Within that
directory will be a file called source_code_documentation.htlm that will lead to the desired information.
In addition to the documentation, there are example programs in each computer language that
illustrate how to implement basic functions.

3.1. Model population
Applications are going to want to generate a new GeoTessModel populated with their data.
Example code that performs this operation is provided for each supported language. There are
three major steps involved in this task:

3.1.1. Step 1 – Specify MetaData
Implement a GeoTessMetaData object and populate it with the following required general information
about the model:
1) Description – a description of the model. GeoTess does not process this information in any way;

it simply stores it in the model and returns it on request. Users can put whatever they want in
here.

2) Layer names – a list of the names of the layers that comprise the model, listed in order of
increasing radius. An example might be “core, mantle, crust”.

3) data type – the type of the data stored in the model. Options are double, float, long, int, short, or
byte. All the data stored in a model must be of the same type.

4) attribute names – a list of the names of the data attributes stored in the model. An example might
be “pvelocity; svelocity; density”. In the example, there would be a 3-element array of data
values associated with each grid node in the model.

5) attribute units – a list of the units of each attribute. If the attribute names were “pvelocity;
svelocity; density”, then the attribute units might be “km/sec; km/sec; g/cc”. If one of the
attributes is a unitless quantity, the corresponding attribute unit would be blank, e.g.,
“km/sec; ; g/cc”. The number of units must equal the number of attribute names.

6) model-population software - the name and version number of the application used to generate the
model. GeoTess does not process this information in any way; it simply stores it in the model
and returns it on request.

7) model generation date - GeoTess does not process this information in any way; it simply stores it in
the model and returns it on request.

8) LayerTessIds – a list of tessellation indexes, with one element for each layer of the model,
establishing a map from layer index to a tessellation index. Consider the model in Figure 2-2 as
an example. Ignoring the crust, the model has 5 layers (inner core, outer core, lower mantle,

16

transition zone and upper mantle). The deeper layers have many fewer profiles than the
shallower layers, imparting variable resolution in the radial dimension to the overall model. To
accomplish this, the GeoTessGrid manages 5 distinct multi-level tessellations, one for each layer.
The LayerTessIds in this case would be the 5-element array “0, 1, 2, 3, 4” specifying that the first
layer is associated with the first multi-level tessellation, etc. For a different model that consisted
of 3 layers where all the layers could reference a single multi-level tessellation, LayerTessIds
should be specified as “0, 0, 0”.

3.1.2. Step 2 – Construct a Model
Construct a GeoTessModel object, specifying the GeoTessMetaData object instantiated in step 1
and the name of a file containing a GeoTessGrid object. Files containing standard GeoTessGrid
objects are available on the GeoTess website or custom GeoTessGrids can be constructed using the
GeoTessBuilder application described later in this document. For this discussion, it is assumed that
the desired GeoTessGrid exists in an accessible file.

After instantiating the GeoTessModel, the model will have instantiated a 2D array of Profile objects,
which are all null, meaning that the model contains no Data.

3.1.3. Step 3 – Add Data
Loop over every layer of the model. For the current layer, request the set of connected vertices for
that layer. This is accomplished by calling the method model.getConnectedVertices(layer).
Loop over every vertex of the grid, including those in the set of connected vertices as well as those
that are not. The vertices are numbered from 0 to nVertices-1. Functions are provided in
GeoTessGrid to retrieve the geographic location of the vertex, either as a unit vector or as a latitude,
longitude pair.

For the current layer and vertex, construct a Profile object. If the current vertex id is not member of
the set of vertices connected together in the current layer, then construct a Profile of type
ProfileEmpty. Otherwise, construct a Profile of one of the types defined below.

A Profile is basically a 1D array of nodes deployed along a radial line that spans a single layer at a
single vertex. Referring to Figure 2-2, each small black dot is a node. Each array of black dots that
spans a single layer is a Profile. A node is comprised of a radius and a Data object, which is a 1D
array of data values, one data value for each attribute specified in the GeoTessMetaData definition.
To instantiate a Profile object, you supply an array of monotonically increasing radius values, and an
array of Data objects. Each Data object is itself an array of attribute values (e.g., pvelocity, svelocity,
etc.). See the sample code for an example of how to do this.

There are 5 types of Profile objects:

1) N-Point profiles consist of two or more radii and an equal number of data arrays, with one data

array associated with each radius.

2) Constant value profiles consist of two radii and a single data array that defines the data values
for the entire radial span of the profile.

17

3) Thin profiles consist of a single radius and a single data array. They have zero thickness, i.e., the
radius of the bottom and top of the profile are equal.

4) Empty profiles consist of two radii but no data arrays.

5) Surface profiles consist of only a single data array. They have no radius values. Together with
Empty Surface profiles, these are used to support 2D models. Surface profiles are incompatible
with all other profile types. If a model contains any surface profiles, it cannot contain any
profiles of any other type.

6) Empty Surface profiles consist of no radii and no data. They are essentially place holders for
null. An Empty Surface profile object will return NaN in response to any request for
information about radius or data information.

After construction, a Profile, p, is added to the model by calling model.setProfile(i, j, p), where i is the
index of a vertex, j is the index of a layer, and p is the just-constructed Profile.
After Profiles have been specified for all layers of all vertices of the model, the model is complete
and ready for use.

3.2. Model I/O
GeoTessModels and GeoTessGrids can be written to and read from files, either in ascii or binary
format. Complete format definitions are supplied in a separate section.

The simplest way to save a model to a file is to call the model.writeModel(string filename) method. If the
file name has the extension ‘ascii’, then the file is written in ascii format. Otherwise it is saved in
binary format. The model data and the grid are written to the same file. Similarly, to load a model
from a file, construct a new model by calling one of the model constructors that does not take the
‘relativeGridPath’ argument. This assumes that the data and grid are contained in the same file.
The model grid and the model data can either be stored together in the same file or they can be
stored in separate files. In many applications, a model will consist of a single data set and a single
grid, in which case it will make the most sense to store the data and grid together in the same file. In
other applications there might be numerous data sets that are all stored on the same grid. For
example, the data may consist of pre-computed travel time predictions for a single station-phase to
every point on the Earth discretized on to the vertices of a grid. There may be separate data sets for
each station in a large network of stations, all of which use the same grid of source positions. If the
application needs to be able to load only a subset of the data sets at any one time, it would be most
efficient for the grid to be stored separately from the data so the grid could be loaded once and
serve the needs of any data set that might be loaded.

GeoTess supports the ability to store the grid and data in separate files. To accomplish this, every
grid has stored within it a unique string that identifies that grid. Typically, this is an MD5 hash of
the contents of the grid (node positions, connectivity, etc.). When a model is stored without its grid,
it stores two pieces of information: the name of the file containing the grid, and the grid’s unique
gridID.

When an application wants to write a model to file, it supplies two parameters: the name of the file
to receive the model and the name of the file to receive the grid. If the supplied grid file name is the
single character ‘*’, then the grid is stored in the same file as the model, right after the model data.

18

If a separate file name is specified for the grid, then the model metadata and model data are written
to the model file along with the name of the grid file and the gridID. The grid file name stored in
the model file does not include any directory information; just the name of the file.
When an application wishes to read a model from file, it supplies two pieces of information: the
name of the model file and the relative path from the directory where the model is stored to the
directory that is to be searched for the associated grid file. If the model file contains the grid, then
the supplied grid directory name is ignored. If the model file does not contain the grid, then the full
path to the grid file is constructed from the name of the directory where the model is stored, the
relative path to the grid directory supplied by the application, and the grid file name stored in the
model file. After the grid is loaded from the separate file, the gridID in the grid file and the gridID
in the model file are compared and if they are not the same and exception is thrown.

3.3. Model interrogation
Once a GeoTessModel has been loaded into memory, applications will need to access information
in the model. This section gives a general overview of the types of model interrogation that can be
accomplished. For a complete definition of all available functionality please consult the online
documentation. The sample codes supplied with each supported languages provide simple examples
of the most common model interrogation functions.
Model interrogations functions fall into 3 general categories: information about the grid, the values
of data attributes stored at grid nodes, and interpolation of data attribute values at off-node
locations.

3.3.1. Grid Information
GeoTessGrid manages the geometry and topology of a model but has no information about any
data attached to the grid. It has some 45 functions that start with ‘get…’ to retrieve information
about the vertices, triangles, tessellation levels and multi-level tessellations that comprise the grid.
The html documentation is the best source of information about these functions.
The most fundamental query made on a GeoTessGrid object is the getVertex(i) method, which
returns the unit vector which defines the location of the ith vertex in the grid. GeoTessUtils
provides the capability to convert back and forth between a unit vector and geographic latitude and
longitude.

3.3.2. Accessing Data Stored in the Model
General information about a model can be retrieved from the GeoTessMetaData object accessible
from the model. Information that is available includes:

• The model description

• The names, units and indexes of the attributes

• The type of the data (double, float, long, int, short or byte)

• The names and indexes of the layers

• The names of the files from which the model and grid were loaded and the amount of time
required to load the model and grid.

• The name and version number of the software that generated the model and the date that
the model was generated.

19

• The map between layer and tessellation indexes.

GeoTessMetaData will allow most of this information to be modified also.

Actual data values stored on grid nodes can be retrieved/modified in one of two ways. The first is
to make the request through the model’s PointMap (model.getPointMap().getValue(ptIndex, aIndex); and
model.getPointMap().setValue(ptIndex, aIndex, newValue); where ptIndex is the index of one of the points
in the model and aIndex is the index of the attribute). The second is to retrieve data is through the
model’s array of Profiles (model.getProfile[i][j].getValue(k, aIndex); where i is the index of a vertex, j is
the index of a layer, k is the index of a node and aIndex is the index of the attribute). To modify
values using Profiles, it is necessary to create a new Data object with the new value(s) and replace
the existing Data object in the Profile by calling profile.setData(index, data). The radii of the nodes can
similarly be accessed/modified through the model’s PointMap or through its array of Profiles.

3.3.3. Interpolating Attribute Values at Arbitrary Locations
GeoTessPosition objects manage the interpolation of attribute values at off-grid locations.
Applications obtain a GeoTessPosition object by calling either model.getGeoTessPosition() or
GeoTessPosition.getGeoTessPosition(). These accessors take optional parameters that specify the type of
interpolation that the GeoTessPosition object should perform. Options are linear or natural
neighbor interpolation in the geographic dimensions and linear or cubic spline interpolation in the
radial dimension.

Once a GeoTessPosition object has been instantiated, users call one of the 4 set() methods to specify
the point in model space where the interpolation is to be performed. All 4 set() methods take a 3D
position in space, either as a latitude, longitude, depth or as a unit vector and radius. Two of the set()
methods take a layer id in addition to the spatial position. If the layer id is not supplied then the set()
method will determine which layer the supplied position is in and store that layer id. If the layer id is
supplied in the set() method, then the GeoTessPosition object will use that layer id, regardless of
which layer the supplied position is in. It is important to note that the supplied position does not
need to be located in the layer that corresponds to the layered stored by the GeoTessPosition object.
After one of the set() methods has been called, a request can be made to interpolate an attribute
value by calling getValue(atttributeIndex). If the current position is located within the boundaries of
the current layer stored by the GeoTessPosition object, then the interpolated attribute value is
returned. If the current position is not within the current layer stored by the GeoTessPosition
object, the behavior is controlled by the parameter radiusOutOfRangeAllowed. If the parameter is true
(the default) then the interpolated value at the top or bottom of the layer is computed and returned.
If radiusOutOfRangeAllowed is false, getValue() will return NaN. A getter and a setter are provided to
retrieve or modify the value of radiusOutOfRangeAllowed.

It is also possible to change only the radius/depth of the current interpolation position, without
changing the geographic position. See methods setDepth() and setRadius().
A GeoTessPositon object can return many other values of interest relative to the position most
recently set, including the radii/depths of the top and bottom of the current or any other layer, the
radial and geographic interpolation coefficients for the current position, the index of the triangle in
which the current position is located, and more. See the online documentation for more
information about these methods.

20

3.4. Extending GeoTess
The Data structures attached to the nodes of a GeoTessModel may not always be able to capture all
of the information that an application may need to store. When this is the case, Java and C++
applications can extend GeoTessModel to store the additional information. An example of an
extended GeoTessModel is the GeoTessModelSiteData extension, which allows for the storage of
station site term data that cannot be stored on the grid nodes of a standard GeoTessModel.

Extensions included with the current version of GeoTess are LibCorr3DModel,
GeoTessModelSiteData, and GeoTessAmplitude. To learn what type of extension (if any) a
GeoTessModel has, use the getClassName or toString functions (see GeoTessExplorer section).
Examples of Java and C++ classes that perform GeoTessModel extensions are provided. The basic
idea is that the derived class implements the data structures and methods needed to fulfill its
requirements, implements all the constructors of a GeoTessModel and overrides several key
protected GeoTessModel IO methods. These IO methods first call the super class IO method and
then read/write their own data structures in either ascii or binary format. See the examples for more
information.

21

4. GEOTESSBUILDER
A number of GeoTessGrid files are delivered as part of the GeoTess delivery package. Each of
these grids is comprised of a single multi-level tessellation with uniform geographic resolution. Grids
with triangle edge lengths ranging from 64° down to ½° are provided. If these grids do not meet
the needs of an application, custom grids can be constructed that may be comprised of multiple
multi-level tessellations in order to achieve variable resolution in the radial direction, and/or variable
resolution in the geographic dimensions. GeoTessBuilder is a Java application that can construct
these grids.

GeoTessBuilder is a command line driven application that takes as its only argument the name of a
properties file that contains information needed to generate the GeoTessGrid. The following
section defines the properties that can be defined in the properties file. Sample properties files are
supplied with the software delivery.

4.1. GeoTessBuilder Properties File
The following considerations apply to property files:

• All property names are case sensitive but property values are not.

• If a default value is defined for a property, then it is not necessary to specify that property in
the properties file.

• If a property value ends with the string ‘ \’ (i.e., a space or tab followed by a backslash
character) is interpreted as a line continuation string. This allows long property values to be
split over several lines.

• Tessellation indexes are zero-based, i.e., the first tessellation has index 0 and the last
tessellation has index nTessellations-1.

• The term triangle edge length refers to the approximate length of a triangle’s edge measured in
degrees. Values should be a power of two, less than or equal to 64, i.e., 64, 32, 16, 8, 4, 2, 1,
½, ¼, ⅛, etc. These values are approximate and assume that the initialSolid is an
icosahedron.

• Files specified in property values can be either ascii files or Google Earth kmz/kml files.
ASCII files contain points defined as either latitude-longitude or longitude-latitude pairs, in
degrees. Latitude-longitude order is the default, but if the file contains the line ‘lon-lat’, then
points are assumed to be in lon-lat order. Latitude and longitude values can be separated by
either a comma or white space. Kml/kmz files contain points, paths or polygons as defined
by Google Earth.

GeoTessBuilder operates in one of two distinct modes: model refinement and construction from scratch. In
model refinement mode an existing GeoTessModel is refined in the neighborhood of a subset of the
points in the model. The user supplies both the name of the file containing the GeoTessModel, and
the name of a file containing the indices of all the points in the model about which refinement is to
take place. The output is a new GeoTessModel. In construction from scratch mode, a new GeoTessGrid
is constructed using specifications defined in below.

22

In construction-from-scratch model, points, paths and polygons are not mutually exclusive. Refinement of
the same tessellation using any or all of the methods, in any combination, is allowed. Also, multiple
multi-level tessellations may be defined in the properties file and each may be refined independently
from the others.

4.1.1. Model Refinement Mode
gridConstructionMode – if this property is equal to ‘model refinement’, then an existing model will be
refined in the neighborhood of a list of specified points. The following properties are relevant.

modelToRefine – The full path to the file containing the GeoTessModel that is to be refined.

fileOfPointsToRefine – The name of the file containing the indices of the points in the model that are
to be refined.

polygonToRefine – The name of the file containing a polygon. All the points inside the polygon will be
refined. See the section of this document about Polygons for more information.

outputModelFile – The name of the file to receive the new GeoTessModel that will be generated by
GeoTessBuilder.

Note that in model refinement mode, none of the properties defined in the next section are accessed by
the code.

4.1.2. Construction-From-Scratch Mode
gridConstructionMode – if this property is equal to ‘scratch’, then GeoTessBuilder will construct a new
GeoTessGrid from scratch using properties defined in this section.

initialSolid – this property specifies the initial solid that defines the first level of each of the multi-
level tessellations that will be included in the new grid. The options are: icosahedron (default),
tetrahexahedron, octahedron, and tetrahedron. Any other value will cause an exception.

nTessellations – The number of multi-level tessellations to be included in the grid. The default is 1.

baseEdgeLengths – the minimum triangle edge length of the triangles in the top level of each tessellation.
The number of values must be equal to nTessellations. If no points, paths or polygons are specified as
described shortly, then uniform tessellations with this geographic resolution will be constructed. If
points, paths and/or polygons are specified, this property specifies the triangle size far from any of
the points, paths or polygons.

points – specification of a list of geographic locations about which refinement is to take place. The
supplied value is parsed as follows: First, the property value is split into substrings based on the
semicolon character (‘;’). Each of these substrings defines a single point about which refinement is
to occur. Each substring is split on the comma character (‘,’) into a number of tokens.

• If the resulting array of strings contains 3 tokens, they are interpreted to be (1) a file name, (2)
a tessellation index, and (3) a triangle edge length. Points are read from the specified file and the

23

multi-level tessellation with the specified index will be refined around all the points to the
specified triangle edge length.

• If the resulting array of tokens contains 5 elements, they are interpreted as follows:

1. Either ‘lat-lon’ or ‘lon-lat’ defining the order of latitude and longitude in entries 4 and 5
below.

2. The index of the multi-level tessellation to refine.

3. The triangle edge length specifying how small the refined triangles around the point should
be.

4. Latitude or longitude of the point in degrees.

5. Latitude or longitude of the point degrees.

paths – specification of lists of points that define paths. All triangles that contain any segment of the
specified paths will be refined to the specified level. The property value is parsed as follows: First,
the property value is split into substrings based on the semicolon character (‘;’). Each substring
includes the specification of a single path. Each substring is split on the comma character (‘,’). The
resulting array of tokens must contain 3 tokens, which are interpreted to be (1) a file name, (2) a
tessellation index, and (3) a triangle edge length. Points are read from the specified file and the multi-level
tessellation with the specified index will be refined around all the paths to the specified triangle edge
length.

polygons – specification of one or more polygons. All triangles that have at least one corner inside
one of the polygons will be refined. The property value is parsed as follows: First, the property
value is split into substrings based on the semicolon character (‘;’). Each substring is the
specification of a single polygon. Each substring is split on the comma character (‘,’). The resulting
tokens are interpreted as follows:

• If the first token is equal to ‘spherical_cap’, then the remaining tokens are interpreted as:
o latitude of the center of the spherical cap
o longitude of the center of the spherical cap
o radius of the spherical cap in degrees
o tessellation index
o triangle edge length specifying the size of the triangles desired within the spherical

cap.

• Otherwise the tokens are interpreted as follows:
o The name of a file containing the definition of a polygon. Files can be either an ascii

file or a Google Earth kmz/kml file. ASCII files contain a list of points defining a
closed polygon. Each point is specified as either a latitude-longitude or longitude-
latitude pair, in degrees. Latitude-longitude order is the default, but if the file
contains the line ‘lon-lat’, then points are assumed to be in lon-lat order. Latitude
and longitude values can be separated by either a comma or white space. Kml/kmz
files contain a single polygon as defined by Google Earth.

24

o tessellation index
o triangle edge length specifying the size of the triangles desired within the polygon.

outputGridFile – the name of the file to receive the new GeoTessGrid.

vtkFile – the name of the file to receive the GeoTessGrid in vtk format. These files can be opened
with ParaView, which is free software for visualization of 3D objects (http://www.paraview.org). A
separate file will be generated for each multi-level tessellation. Include the substring ‘%d’ in the file
name. It will be replaced with the tessellation number in the filename. If only one tessellation is
being generated then the ‘%d’ substring is not required. The filename must end with the extension
“.vtk”.

eulerRotationAngles – It is possible to rotate the triangular tessellation produced by GeoTessBuilder,
relative to the traditional latitude, longitude grid, by providing 3 Euler rotations angles, in degrees.
Given two coordinate systems xyz and XYZ with common origin, starting with the axis z and Z
overlapping, the position of the second can be specified in terms of the first using three rotations
with angles A, B, C as follows:

1. Rotate the xyz-system about the z-axis by A.

2. Rotate the xyz-system again about the now rotated x-axis by B.

3. Rotate the xyz-system a third time about the new z-axis by C.

Clockwise rotations, when looking in direction of vector, are positive (see
http://mathworld.wolfram.com/EulerAngles.html).

For example, to rotate the grid such that grid vertex 0, which normally coincides with the north
pole, resides instead at position geocentric_lat0, lon0 (in degrees), then supply the 3 Euler rotation
angles lon0+90, 90 - geocentric_lat0, 0.

4.2. GeoTessBuilder Examples

4.2.1. Example 1
The first example of building a grid will construct a single GeoTessGrid object that is comprised of
three multi-level tessellations. Each tessellation has uniform resolution in the geographic
dimensions. See section on Model Population to learn about how to use a GeoTessGrid like this to
build a GeoTessModel.

The property file for this example contains:

file: gridbuilder.properties
this properties file will result in a single GeoTessGrid
object consisting of 3 multi-level tessellations. The
triangles on the top level of each tessellation will each be
approximately uniform in the geographic dimensions.
Tessellation 0 will have triangles with edge lengths of about 32 degrees
Tessellation 1 will have triangles with edge lengths of about 16 degrees
Tessellation 2 will have triangles with edge lengths of about 4 degrees.
All three tessellations will be stored together in the same output file.
Separate vtk files will be generated for each tessellation for visualization.

specify GeoTessBuilder grid construction mode.

25

gridConstructionMode = scratch

number of multi-level tessellations to build
nTessellations = 3

the triangle size that is to be achieved on the
top tessellation level of each multi-level tessellation
baseEdgeLengths = 32 16 4

file to receive the GeoTessGrid definition
outputGridFile = three_uniform_tessellations.geotess

file to receive the vtk files used for visualization with ParaView.
Since there are three tessellations, the ‘%d’ substring is required.
Three vtk files will be produced, one for each tessellation.
The ‘%d’ substrings will be replaced with the tessellation index.
vtkFile = three_uniform_tessellations_%d.vtk

Figure 4-1 illustrates the 3 multi-level tessellations that result from running this example.

Figure 4-1. Three multi-level tessellations generated by example 1. The tessellations have triangle
sizes of approximately 32°, 16°, and 4°. Each image shows only the top level of the corresponding

multi-level tessellation. These multi-level tessellations are all components of a single
GeoTessGrid object, stored in a single GeoTessGrid output file. The continental outlines are for

illustrative purposes only and are not part of the GeoTessGrid object.

4.2.2. Example 2
The next example constructs a single GeoTessGrid object that is comprised of a single multi-level
tessellation. The top level of this tessellation will be composed of triangles mainly of approximately
8° edge lengths. But in the neighborhood of a single point in the North Atlantic, the triangles are
refined down triangles with edge lengths of approximately ⅛°.

The property file for this example contains:

file: gridbuilder_point_example.properties
this properties file will result in a single GeoTessGrid
object consisting of 1 multi-level tessellation with the
triangles on the top tessellation level having edge lengths
of about 8 degrees. In the neighborhood of a point located
at about 32N, 36W, the triangles are refined down to a
triangle size of about 1/8th of a degree.

specify GeoTessBuilder grid construction mode.
gridConstructionMode = scratch

26

number of multi-level tessellations to build
nTessellations = 1

the triangle size that is to be achieved on the
top tessellation level, far from refinement point
baseEdgeLengths = 8

specify a single point. The tokens in the property value are:
1) lat-lon, 2) tessellation index, 3) triangle edge length in degrees,
4) latitude and 5) longitude. More points could have been
specified by including similar strings, separated by semi-colons.
points = lat-lon, 0, 0.125, 31.88984, -36.000000

file to receive the GeoTessGrid definition
outputGridFile = gridbuilder_point_example.geotess

file to receive the vtk file used for visualization with ParaView
vtkFile = gridbuilder_point_example.vtk

Figure 4-2 illustrates the variable resolution tessellation that is generated by this example.

Figure 4-2. Top level of the multi-level tessellation generated by example 2. Most of the triangles
shown have edge lengths of approximately 8° but triangles near the refinement point are as small

as ⅛°.

4.2.3. Example 3
In this example a single GeoTessGrid object is constructed that is comprised of a single multi-level
tessellation. The top level of this tessellation will be composed of triangles mainly of approximately
8° edge lengths. But in the neighborhood of a path describing the mid-Atlantic Ridge, the triangles
are refined down triangles of edge length of approximately 0.5°. The path that defines the mid-
Atlantic Ridge is stored in a Google Earth .kmz file.

The property file for this example contains:

file: gridbuilder_path_example.properties
this properties file will result in a single GeoTessGrid
object consisting of 1 multi-level tessellation with the
triangles on the top tessellation level having edge lengths
of about 8 degrees. In the neighborhood of a path describing

27

the trace of the mid-Atlantic Ridge, the triangles are refined
down to a triangle size of about 1 degree.

specify GeoTessBuilder grid construction mode.
gridConstructionMode = scratch

number of multi-level tessellations to build
nTessellations = 1

the triangle size that is to be achieved on the
top tessellation level from the path defined below.
baseEdgeLengths = 8

specify a single path. The tokens in the property value are:
1) the name of the file containing the path, 2) tessellation
index, and 3) triangle size for triangles near the path.
paths = mid_atlantic_ridge.kmz, 0, 1.0

file to receive the GeoTessGrid definition
outputGridFile = gridbuilder_path_example.geotess

file to receive the vtk file used for visualization with ParaView
vtkFile = gridbuilder_path_example.vtk

Figure 4-3 illustrates the results of this example.

Figure 4-3. (left) The trace of the mid-Atlantic Ridge as viewed with Google Earth. (right) Top level

of the multi-level tessellation generated by example 3. Most of the triangles shown have edge
lengths of approximately 8° but triangles that span the mid-Atlantic Ridge have triangles with

edge lengths about 1°.

4.2.4. Example 4
In this example a single GeoTessGrid object is constructed that is comprised of a single multi-level
tessellation. The top level of this tessellation will be composed of triangles mainly of approximately
8° edge lengths. All triangles with a corner inside a polygon surrounding the lower 48 states of the
US are refined to about 1° and triangles with a corner inside a polygon outlining the state of New
Mexico are refined to about ⅛°.

28

The property file for this example contains:

file: gridbuilder_polygon_example.properties
this properties file will result in a single GeoTessGrid
object consisting of 1 multi-level tessellation with the
triangles on the top tessellation level having edge lengths
of about 8 degrees. Triangles with at least one corner
inside a polygon surrounding the lower 48 states in the US
are refined to about 1 degree. Triangles with at least
one corner inside a polygon outlining the state of New
Mexico are further refined to about 1/8 the of a degree.

specify GeoTessBuilder grid construction mode.
gridConstructionMode = scratch

number of multi-level tessellations to build
nTessellations = 1

the triangle size that is to be achieved on the
top tessellation level from the path defined below.
baseEdgeLengths = 8

polygons = \
 united_states.kml, 0, 1.0 ; \
 new_mexico.kmz, 0, 0.125

file to receive the GeoTessGrid definition
outputGridFile = gridbuilder_polygon_example.geotess

file to receive the vtk file used for visualization with ParaView
vtkFile = gridbuilder_polygon_example.vtk

Figure 4-4 illustrates the results of this example.

Figure 4-4. (left) Polygons generated and viewed with Google Earth. (right) Top level of the multi-

level tessellation generated by example 4. Triangles far from the conterminous US have edge
lengths of approximately 8° but triangles with at least one corner inside the polygon surrounding
the US have triangles with edge lengths about 1°. Triangles with a corner in the polygon defining

the state of New Mexico have edge lengths of approximately ⅛°.

29

5. POLYGONS
GeoTess makes use of polygons for several purposes. GeoTessBuilder uses polygons to define grid
resolution, and GeoTessModel can use polygons to select a subset of all Points in a GeoTessModel
for inclusion in a PointMap. To directly construct and make use of polygons in Java and C++
applications, consult the html documentation for those languages. This section describes polygon
file formats.

GeoTess uses two kinds of polygons, 2D polygons and 3D polygons. A 2D polygon consists of an
ordered list of geographic positions that define a closed loop on the surface of a unit sphere. A 3D
polygon is similar to a 2D polygon with regard to the geographic dimensions but adds a ‘top’ and a
‘bottom’ in the radial direction. The top and bottom are 2D surfaces of constant depth, constant
radius, or constant fractional position within a layer.

A very convenient way to generate a 2D polygon is to use Google Earth
(http://www.google.com/earth). It provides a tool to define and edit 2D polygons by clicking on an
image of the Earth. The polygon can then be saved in either ascii (kml) or binary (kmz) formats.
Kml/kmz files have three limitations with respect to GeoTess applications. 1) They are only
accessible via the Java version of GeoTess; the C++, C and FORTRAN versions cannot read these
formats. 2) 3D polygons cannot be stored in kml/kmz files because they have no ability to store the
2D surfaces that define the top and bottom of the 3D polygons. 3) With polygons stored in
kml/kmz files, it is not possible to record which ‘side’ of the polygon is ‘inside’ and which is
‘outside’. GeoTessExplorer has a utility function called translatePolygon to translate polygons back and
forth between ascii and kml/kmz formats.

When generating polygons, it is important to note that polygon edges are great circle paths and are
interpreted as taking the shortest path between adjacent points. When manually entering points into
an ascii file, ensure that adjacent points are less than 180 degrees apart. For example, if two points at
0N, 100W and 0N, 100E are specified, the great circle path connecting those two points will pass
through 0N, 180E, not 0N, 0E as might be expected.

ASCII files are parsed as follows:

Records that start with '#' are considered to be comment lines and are ignored.
If there is a record that starts with 'lat' then all boundary point records will be assumed to be in
order lat-lon. If there is a record that starts with 'lon' then all boundary point records will be assumed
to be in order lon-lat. If no record starts with 'lat' or 'lon', boundary point records are assumed to be
in order lat-lon.

If there is a record that starts with 'reference' then the record is assumed to contain information about
the referencePoint which is used to determine which ‘side’ of the polygon is ‘inside’ and which is
‘outside’. The second and third tokens in the record are interpreted as the latitude and longitude of
the referencePoint, in degrees (the order depends on the lat-lon record described above). If the fourth
and final token starts with 'in' then the reference point is considered to be 'inside' the polygon,
otherwise it is considered to be ‘outside’ the polygon.

30

For kmz/kml files, and for ascii files which do not specify a referencePoint as described above, the
reference point will be the anti-pode of the normalized vector sum of the polygon boundary points
and will be deemed to be 'outside' the polygon.

All other records are assumed to specify a boundary point in lat-lon or lon-lat order, in degrees. If a
record is encountered that cannot be parsed as two floating-point values, the record is simply
ignored without issuing any error or warning messages.

It is not necessary to ensure that the polygon is ‘closed’. If the first and last points of the polygon
definition are not identical, the polygon will be closed automatically.

If the first record of an ascii file is the string ‘POLYGON3D’ then the file defines a 3D polygon,
otherwise it defines a 2D polygon. If the file defines a 3D polygon, then it must also contain two
records which define the top and bottom surfaces of the polygon. Each of these records must
consist of 4 tokens as follows:

[top | bottom], [radius | depth | layer], Z, layerIndex

The first token specifies whether the top or bottom surface is being defined. The file must contain
one record that starts with ‘top’ and one record that starts with ‘bottom’. The second token specifies
how the surface is to be specified. The following possibilities are defined:

• radius/depth – The surface is defined by a constant radius/depth. The third token, Z,
specifies the radius/depth value in km. The final token, layerIndex, specifies whether or not
the surface is constrained to a particular layer. If layerIndex is negative, then the surface is not
constrained to any particular layer, it will be equal to the specified radius/depth, no matter
what layer that radius/depth corresponds to. If layerIndex specifies a valid layer index, then
the surface will track the specified radius/depth value so long as the radius/depth resides in
the specified layer. If the specified radius/depth is above the top of the specified layer, then
the surface will track the top of the layer. If the radius is below the bottom of the layer, then
the surface will track the bottom of the layer.

• layer – In this case, the surface is everywhere constrained to reside in the layer specified by
layerIndex, which must correspond to a valid layer. Z specifies a fractional position within the
layer. If Z is <= 0, then the surface will track the bottom of the specified layer. If Z is >= 1,
the surface will track the top of the layer. For intermediate values, the surface will track the
corresponding fractional position within the layer.

The following is an example of the contents of a 2D polygon file:

Polygon2D
Reference 5 15 inside
lon-lat
0 0
20 0
20 30
0 30

31

0 0

This 2D polygon will consist of a simple box from 0N, 0E at the bottom left corner, extending to
20N, 30E at the upper left corner. The reference point is specified to be located at 5N, 15E and is
‘inside’ the polygon. Because the first 3 lines all specify default behavior, an equivalent specification
for this polygon would have been simply:

0 0
20 0
20 30
0 30

Here is an example of the contents of a 3D polygon file:

#This file defines a 3D polygon
Polygon3D
TOP Layer 1.000 6
BOTTOM Depth 4000.000 -1
Reference 5 15 outside
lon-lat
0 0
20 0
20 30
0 30

The top of the polygon is defined by a surface that conforms to the top of layer 6. The bottom
surface is defined by a constant depth at 4000 km below the surface of the ellipsoid and is
unconstrained to conform to any particular layer (it may reside in different layers at different
geographic locations). The boundary points are specified in longitude, latitude order so the box
extends from 0N 0E in the lower left to 30N, 20E in the upper right. The reference point is located
at 15N, 5E and is ‘outside’ the polygon.

32

This page left blank.

33

6. GREAT CIRCLES
The GreatCircle class manages the information about a great circle path that extends from one point
to another point, both of which are located on the surface of a unit sphere. It supports great circles
where the distance from the firstPoint to the lastPoint are 0 to 2*PI radians apart, inclusive. Either or
both of the points may coincide with one of the poles of the Earth.
There is a method to retrieve a point that is located on the great circle at some specified distance
from the first point of the great circle.

The method getIntersection(other, inRange) will return a point that is located at the intersection of two
great circles. In general, two great circles intersect at two points, and this method returns the one
that is encountered first as one moves away from the first point of the first GreatCircle. If the
Boolean argument inRange is true, then the method will only return a point if the point falls within
the range of both great circles. In other words, the point of intersection has to reside in between the
first and last point of both great circles. If inRange is false, then that constraint is not applied.
GreatCircle has the ability to transform the coordinates of an input point so that it resides in the
plane of the great circle. This is useful for extracting slices from a 3D model for plotting purposes.
The z-coordinate of the transformed point will point out of the plane of the great circle toward the
observer. The y-coordinate of the transformed point will be equal to the normalized vector sum of
the first and last point of the great circle and the x-coordinate will be y cross z.

The key to successfully defining a great circle path is successfully determining the unit vector that is
normal to the plane of the great circle (firstPoint cross lastPoint, normalized to unit length). For great
circles where the distance from firstPoint to lastPoint is more than zero and less than PI radians, this is
straightforward. But for great circles longer than PI radians, great circles of exactly zero, PI or 2*PI
radians length, or great circles where the first point resides on one of the poles, complications arise.
To determine the normal to the great circle, three constructors are provided (besides the default
constructor that does nothing).

The first constructor is the most general. It takes four arguments: firstPoint (unit vector),
intermediatePoint (unit vector), lastPoint (unit vector) and shortestPath (boolean). The normal is
computed as firstPoint cross lastPoint normalized to unit length. If the distance from firstPoint to
lastPoint is greater than zero and less than PI radians, then the resulting normal will have finite length
and will have been successfully computed. If, however, the distance from firstPoint to lastPoint is
exactly 0 or PI radians, then normal will have zero length. In this case, a second attempt to compute
the normal is executed by computing firstPoint cross intermediatePoint. If this is successful, the
calculation proceeds. If not successful, then the normal is computed as the first of: firstPoint cross Z,
firstPoint cross Y or firstPoint cross X, whichever produces a finite length normal first. Z is the north
pole, Y is (0N, 90E) and X is (0N, 0E). One of these calculations is guaranteed to produce a valid
normal. Once the normal has been computed, then the shortestPath argument is considered. If
shortestPath is true, then no further action is taken, resulting in a great circle with length less than or
equal to PI radians. If shortestPath is false then the normal is negated, effectively forcing the great
circle to go the long way around the globe to get from firstPoint to lastPoint. When shortestPath is false
the length of the great circle will be >= PI and <= 2*PI. For example, when shortestPath is true, a
great circle path from (10N, 0E) to (30N, 0E) will proceed in a northerly direction for a distance of
20 degrees to get from firstPoint to lastPoint. But if shortestPath is false, the great circle will proceed in
a southerly direction for 340 degrees to get from firstPoint to lastPoint.

34

The second constructor is a simplification of the first, taking only 3 arguments: firstPoint (unit
vector), lastPoint (unit vector) and shortestPath (boolean). It calls the first constructor with
intermediatePoint set to NULL. This is useful in cases where the calling application is certain that great
circles of length exactly 0 or PI radians will not happen or is willing to accept an arbitrary path if it
does happen.

There is a third constructor that takes 3 arguments: firstPoint (unit vector), distance (radians) and
azimuth (radians). The lastPoint of the great circle is computed by moving the first point the
specified distance in the specified direction. This constructor can produce great circles where the
distance from firstPoint to lastPoint is >= 0 and <= 2*PI, inclusive. It can fail, however, if firstPoint
coincides with either of the poles because the notion of azimuth from a pole in undetermined.

35

7. ELLIPSOIDS
GeoTess is only modestly dependent on the ellipsoids often used to define the shape of the Earth.
In general, ellipsoids are important for two purposes: (1) they are used to convert between
geographic and geocentric latitude and (2) they are used to convert between radius, measured from
the center of the Earth, to depth measured from the surface of a specified ellipsoid. GeoTess is
inherently not dependent on either of these factors because (1) the geographic locations of all
vertices are stored and manipulated as Earth-centered unit vectors, which are independent of
ellipsoid, and (2) the radial positions of all grid nodes are specified, stored and manipulated as radii
measured in km from the center of the Earth.

That said, model developers may have used a particular Earth ellipsoid when they converted depth
information to radii for purposes of model population and they may wish to store in the model the
name of the ellipsoid that was used to populate the model. So, starting with GeoTess version 2.2.0
the binary and ascii model file formats were modified to include storage of the name of an Earth
ellipsoid that is associated with the model. This entailed incrementing the model file format number
from 1 to 2 (see the appendix). There are facilities provided in the GeoTess software to manipulate
geographic information and for retrieving the radius of the ellipsoid at a specified latitude. See
functions GeoTessModel.getEarthShape() for more information. The section Manipulation of Geographic
Locations on an Ellipsoidal Earth describes how GeoTess manages geographic information and Earth
ellipsoids.

The Earth ellipsoids supported by GeoTess include:

Table 7-1. Ellipsoids Supported by GeoTess.
Ellipsoid Inverse flattening parameter Equatorial Radius (km)

SPHERE ∞ 6371.000

GRS80 298.257222101 6378.137

GRS80_RCONST 298.257222101 6371.000

WGS84 298.257223563 6378.137

WGS84_RCONST 298.257223563 6371.000

IERS 298.25642 6378.1366

IERS_RCONST 298.25642 6371.000

Ellipsoid SPHERE treats the Earth as a sphere and hence does not convert between geocentric and
geographic latitudes. All of the other ellipsoids use the specified inverse flattening parameter to
convert between geocentric and geographic latitudes. The SPHERE and all of the ellipsoids that
end in ‘RCONST’ assume, for purposes of converting between depth and radius, that the radius of
the earth is a constant equal to 6371 km. Ellipsoids GRS80, WGS84 and IERS assume that the
radius decreases from equator to poles according to the specified parameters.

36

8. MANIPULATION OF GEOGRAPHIC LOCATIONS ON AN
ELLIPSOIDAL EARTH

In order to manipulate points on or near the surface of the Earth, it is convenient to work in a
Cartesian coordinate system where points are defined by a unit vector, v, with its origin at the center
of the Earth, and a radial distance from the center of the Earth, r, measured in km. We choose our
coordinate system such that v0 points from the center of the Earth towards the point on the surface
with latitude and longitude 0°, 0°; v1 points toward latitude, longitude 0°, 90° and v2 points toward
the north pole (Figure 8-1).

Figure 8-1. Earth centered coordinate system. v0 points from the center of the Earth towards the
point on the surface with latitude and longitude 0°, 0°; v1 points toward latitude, longitude 0°, 90°

and v2 points toward the north pole.

The parameters that define the GRS80 ellipsoid are:

𝑎 = 6378.137	km
𝑏 = 6356.7523141	km

𝑓 = 	
𝑎 − 𝑏
𝑎 = 1/298.257222101

𝑒! =
𝑎! − 𝑏!

𝑎! = 2𝑓 − 𝑓! = 0.006694380022900787

where a and b are the equatorial and polar radii of the Earth, respectively, f is the flattening
parameter, and e is the eccentricity. Any two of these parameters are sufficient to completely define
the ellipsoid. In the equations presented in this paper a and e2 are used (Snyder, 1987).

Geographic data, such as station locations, seismic event locations, etc., are generally given in
geographic latitude, f’, longitude, q’, and depth, z. Geographic latitude is the acute angle between
the equatorial plane and a line drawn perpendicular to the tangent of the reference ellipsoid at the
point of interest (Figure 8-2). Geodesic latitude is another term for geographic latitude. Geocentric
latitude is the acute angle between the equatorial plane and a line from the center of the Earth to the
point in question. Geographic, geodesic and geocentric longitudes are all equivalent.

To convert the position of a point in space from geographic to Cartesian coordinates, we must first
convert from geographic to geocentric coordinates. Given the geographic latitude f’, and
geographic longitude q’, of a point, the geocentric latitude, f, and geocentric longitude, q, are
(Snyder, 1987)

37

 (1)

Then we convert from geocentric to Cartesian coordinates (Zwillinger, 2003)

 (2)

We must also convert depth, z, to radius
 (3)

where R(f), the radius of the Earth at geocentric latitude f, is given by

 (4)

To convert a unit vector, v, and radius r back to geographic latitude, longitude and depth

Figure 8-2. An exaggerated ellipsoid illustrating the difference between geographic latitude, j’,

and geocentric latitude, j.

 (5)

'
)'tan)1arctan((2

qq
ff

=
-= e

f
qf
qf

sin
sincos
coscos

2

1

0

=
=
=

v
v
v

zRr -=)(f

2
1

2
2

2

sin
1

1)(
-

÷÷
ø

ö
çç
è

æ
-

+= ff
e
eaR

()

rRz
v

v
e
v

-=

÷
ø
öç

è
æ=

÷
ø
ö

ç
è
æ

-
=

)(

arctan'

1
arcsintanarctan'

0

1

2
2

f

q

f

P

f f’ equator

Line tangent to
ellipsoid at P

Center of
the Earth

38

Figure 8-3. (top) Comparison of geographic and geocentric latitudes for the GRS80 ellipsoid.

(bottom) km per degree and Earth radius as a function of geocentric latitude.

Once geographic information has been converted to unit vectors, a variety of useful calculations can
be performed.

8.1. Distance between two points
Given two points defined by unit vectors, u and v, the angular separation of the two points is

 (6)

To find the separation of u and v at the surface of the Earth in km, it is necessary to either perform
the following integration numerically

Geocentric Latitude (degrees)

Km
pe
rd
eg
re
e

0 15 30 45 60 75 90110.90

111.00

111.10

111.20

111.30

Geocentric Latitude (degrees)

Ea
rth
R
ad
iu
s
-6
37
1
(k
m
)

0 15 30 45 60 75 90

-15

-10

-5

0

5

Geocentric Latitude (degrees)

G
eo
gr
ap
hi
c
-G
eo
ce
nt
ric
La
tit
ud
e
(d
eg
re
es
)

0 15 30 45 60 75 900.00

0.05

0.10

0.15

0.20

)arccos(vu ×=D

39

 (7)

or consider the algorithm of Vincenty (1975).

8.2. Azimuth from one point to another
The azimuth, a, from u to v, measured clockwise from north, is

 (8)

where n is the vector pointing to the north pole, n = [0, 0, 1].

8.3. Points on a great circle
Given two points defined by unit vectors u and v, to find another point, w, that lies on the great
circle defined by u and v, at some angular distance d, measured from u in the direction of v (see
Figure 8-4)

 (9)

Note that if many points, wi, are to be found along the same great circle defined by u and v, the
normalized vector triple product, t, only needs to be computed once.

Figure 8-4. Calculation of w given u and v. All vectors are of unit length and lie entirely in the

plane of the figure.

8.4. Finding a new point some distance and azimuth from another point
To find a point, w, that is some specified distance d from p in direction φ, (see Figure 8-5) we first
find an intermediate point u, distance δ north of p by applying Equation 9 with v = n = [0, 0, 1].
Then w is found by rotating u around p by angle α = -φ.

 (10)

() df dRd ò=
v

u

()
apa

a

-=<×´

´×´=

2)0(

arccos

nvu

nuvu

if

()
dd sincos tuw

uvut
+=

´´=

() () aaa sin)cos1(cos upuppuw ´+-×+=

δ

40

α is equal to –φ because rotations defined by equation 10 are positive clockwise when viewed in the
direction of the pole of rotation p.

Figure 8-5. Start at point p, located at latitude, longitude 45°, 0°. Find a new point u δ = 20° north

of p. Then rotate u φ = 235° around p to position w. Note that Ðpu = Ðpw = δ = 20°.

-0.4
0.0
0.4

x
-0.4 0.0 0.4

y

p

u

w
j

d

41

9. GEOTESSEXPLORER
GeoTessExplorer is a Java application that implements a set of command line driven functions to
extract or modify information in a GeoTessModel in a number of ways, including extracting maps,
generating vtk plot files, extracting site terms, and so on. To view a list of available functions, locate
the Java jar file geo-tess-explorer.jar in the Java section of the GeoTess delivery and run ‘Java –jar
geo-tess-explorer.jar’.

This action will output the list of currently available functions shown below.

• version -- output the GeoTess version number
• toString -- print summary information about a model
• statistics -- print summary statistics about the data in a

model
• getClassName -- discover the class name of a specified model
• equal -- given two GeoTessModels test that all radii and

attribute values of all nodes are ==. Metadata
can differ.

• extractGrid -- load a model or grid and write its grid to
stdout, vtk, kml, ascii or binary file

• resample -- resample a model onto a new grid
• extractActiveNodes -- load a model and extract the positions of all

active nodes
• replaceAttributeValues -- replace the attribute values associated with

all active nodes
• reformat -- load a model and write it out in another format
• getValues -- interpolate values at a single point
• getValuesFile -- interpolate values at points specified in an

ascii file
• interpolatePoint -- interpolate values at a single point (verbose)
• borehole -- interpolate values along a radial profile
• profile -- extract model values at vertex closest to

specified latitude, longitude position
• findClosestPoint -- find the closest point to a supplied geographic

location and return information about it
• slice -- interpolate values on a vertical plane defined

by a great circle connecting two points
• sliceDistAz -- interpolate values on a vertical plane defined

by a great circle defined by a point, a
distance and a direction

• mapValuesDepth -- interpolate values on a lat, lon grid at
constant depths

• mapValuesLayer -- interpolate values on a lat, lon grid at
fractional radius in a layer

• mapLayerBoundary -- depth of layer boundaries on a lat, lon grid
• mapLayerThickness -- layer thickness on a lat, lon grid
• values3DBlock -- interpolate values on a regular lat, lon,

radius grid
• function -- new model with attributes calculated from two

input models
• vtkLayers -- generate vtk plot file of values at the tops of

layers

42

• vtkDepths -- generate vtk plot file of values at specified
depths

• vtkDepths2 -- generate vtk plot file of values at specified
depths (depths specified with a comma-separated
list)

• vtkLayerThickness -- generate vtk plot file of layer thicknesses
• vtkLayerBoundary -- generate vtk plot file of depth or elevation of

layer boundary
• vtkSlice -- generate vtk plot file of vertical slice (will

also generate slice_outline.vtk)
• vtkSolid -- generate vtk plot file of entire globe
• vtk3DBlock -- generate vtk plot file of values on a lat-lon-

depth grid
• vtkPoints -- generate vtk plot of point data
• vtkRobinson -- generate vtk plot of a Robinson projection of

model data (will also generate
map_coastlines_centerLon*.vtk)

• vtkRobinsonLayers -- generate vtk plot of a Robinson projection of
model data at tops of multiple layers (will
also generate map_coastlines_centerLon*.vtk)

• vtkRobinsonPoints -- generate vtk plot of a Robinson projection of
point data

• vtkRobinsonTriangleSize -- generate vtk plot of triangle size on Robinson
projection

• vtkLayerAverage -- generate vtk plot of the average values within
the crust of a designated model

• reciprocalModel -- generates a reciprocal GeoTessModel, where all
values are inverted

• renameLayer -- renames an individual layer in a GeoTessModel
• getLatitudes -- array of equally spaced latitude values
• getLongitudes -- array of equally spaced longitude values
• getDistanceDegrees -- array of equally spaced distances along a great

circle
• translatePolygon -- translate polygon between kml/kmz and ascii

format

GeoTessModelSiteData:

• extractSiteTerms -- extract site terms from a GeoTessModelSiteData
and print to screen

• replaceSiteTerms -- replace site terms in a GeoTessModelSiteData
with values loaded from a file

To view a list of required arguments for any of the above functions, run ‘java -jar geo-tess-explorer.jar
FunctionName’. For example, running ‘java –jar geo-tess-explorer.jar toString’ will output the following
instructions:

Must supply either 2 or 3 arguments:
 1 -- toString
 2 -- name of file containing a GeoTessModel or GeoTessGrid
 3 -- relative path to grid directory (only needed when (2) is a model and grid is stored in separate file)

43

Note that if any required arguments for a function are missing during a run, its list of required
arguments will be output.

The intention of GeoTessExplorer is for users to either pipe the output to a file or to insert a call to
this program into a script with the output piped to some other program. For example, to save the
output of the toString function to a text file, run ‘java -jar geo-tess-explorer.jar toString SALSA3D.geotess
> toString.txt’.

Many functions require a 'list of attributes' as one of the command line arguments. This list can be a
string similar to '0,2,4-n', which would return attributes 0, 2 and 4 through the number of available
attributes. 'n' would return only the last attribute. 'all' and '0-n' would both return all attributes. The
list may not include any spaces.

For most functions, the first two arguments after the function name are the name of the input
model file and the relative path to the grid directory. Some models have the grid stored in the same
file with the model while other models reference a grid stored in a separate file. If the grid is stored
in the same file with the model, then the relative path to the grid directory is irrelevant but
something must be supplied in order to maintain the order of the argument list (typically this can be
the single character ‘.’).

If the grid is stored in a separate file, then the name of the file that contains the grid, without any
directory information, is stored in the model file. When the model is loaded, it has to be told the
relative path from the directory where the model is located to the directory where the grid file is
located. If the grid is in a separate file located in the same directory as the model file, provide the
single character '.'. Note that models and grids also contain an MD5 hash of the grid file contents,
so the danger of a model referencing the wrong grid is vanishingly small.

All the functions whose names start with 'vtk' extract information from a GeoTessModel and store
it in a file in VTK format (http://www.vtk.org/VTK/img/file-formats.pdf). These files can be
visualized with free software called ParaView. Visit http://www.paraview.org for more information
and downloads for various platforms.

Finally, the majority of the functions listed above can be applied to any type of GeoTessModel.
However, note that the functions listed under GeoTessModelSiteData are specifically for application
to GeoTessModels with SiteData. To learn what type of extension (if any) a GeoTessModel has, use
the getClassName function.

44

This page left blank.

45

10. INSTALLATION INSTRUCTIONS

10.1. Setup
All required GeoTess modules should be placed in the same directory, unless you wish to modify
the Makefiles. The Makefiles assume their module is in the same top-level directory as all the other
modules.
There are no third-party dependencies to GeoTess; however, there are inter-dependencies. The
GeoTessCPP and GeoTessJava modules are independent. The examples and GeoTessCShell are
not independent. Each example requires its respective language module installed. GeoTessCShell
requires GeoTessCPP to be installed.

10.2. Build Environments
The various GeoTess modules come with Makefiles for Linux, SunOS, MacOS, and Windows –
except for Java, which is run from a jar file included in the GeoTess package. This was done to keep
the complexity to the command line, which is a common ground between these systems. These
Makefiles were made for common environments for each of these operating systems. Here are the
assumptions that are made for each environment:

• Windows: Visual Studio is installed as well as the GNU Make program for Windows. This
can be found here, and is used for running the Makefiles on the windows command prompt.
For the C++ and C code, it is compiled using the cl.exe compiler and link.exe linker from
the Visual Studio tool chain.

• SunOS: GeoTess is built on SunOS using SunStudio 12 using CC using gnu make. NOTE:
SunOS is no longer being supported.

• Linux: GeoTess is built with gcc using gnu make.

• MacOS: GeoTess is built using gcc using gnu make.

All of the required tools must be accessible via the command line through the environment.
It is assumed when building the modules that all other required modules are in the same top-level
directory. For example: To build GeoTessCShell, which is in the directory “GeoTessRoot”, since
the C shell requires the C++ library, the Makefile assumes that the C++ code is in
“GeoTessRoot/GeoTessCPP”.

10.3. Makefile Usage
There are three Makefiles that come with each non-Java module: one master Makefile and two sub-
Makefiles – one for Windows builds and the other for Linux/Unix/Mac builds. The complexity of
making one Makefile that could handle both Windows path delimiters and other differences from
Linux/Unix/Mac was too high, so it was split into two different Makefiles. The master Makefile
will select the correct sub-Makefile to run depending on the operating system.

To call the Makefile specific to your OS on the command line, just type “make” in the directory
containing the Makefiles. The master Makefile will select the right sub-Makefile for the OS and pass

46

down any arguments given. To supply a target to the Makefile, call “make” with the target as the
first argument. There are three targets commonly used in these files:

• “all”: Builds all the module’s object files and then produces the .exe/.dll/.so/.dylib result.
For executable results, they are written to the “bin” directory of the module. For libraries
they are written to the “lib” directory of the module.

• “clean_objs”: Removes all object files but leaves the .exe/.dll/.so/.dylib results.

• “clean”: Removes all objects files and .exe/.dll/.so/.dylib results. This target should return
the module directory to the same state it was in before a call to “make all” was executed.

10.4. Makefile Results
These are the results of running “make” in each module. Each path is relative to the module itself.
For Windows (including but not limited to):

• GeoTessCPP: lib\libgeotesscpp.dll, lib\libgeotesscpp.dll.manifest, lib\libgeotesscpp.lib,
lib\libgeotesscpp.exp

• GeoTessCPPExamples: bin\geotesscppexamples.exe

• GeoTessCShell: lib\libgeotesscshell.dll, lib\libgeotesscshell.dll.manifest,
lib\libgeotesscshell.lib, lib\libgeotesscshell.exp

• GeoTessCExamples: bin\crust.exe, bin\simple.exe

For Linux/Unix/Mac:
• GeoTessCPP: lib/libgeotesscpp.so

• GeoTessCPPExamples: bin/geotesscppexamples

• GeoTessCShell: lib/libgeotesscshell.so

• GeoTessCExamples: bin/crust, bin/simple

10.5. Makefile Production
This section describes the general method that each Makefile uses to produce the results. This
includes what files from other modules are required. All paths are relative to the module itself.

• GeoTessCPP: Compiles source in “src” with the header files in “include” to produce the
shared library result.

• GeoTessCPPExamples: Compiles the source in “src” with the header files in
“../GeoTessCPP/include” and links with the shared library in “../GeoTessCPP/lib” to
produce the executable result.

• GeoTessCShell: Compiles the source in “src” with the header files in “include” and
“../GeoTessCPP/include” and links the result with the shared library in
“../GeoTessCPP/lib” to produce the result.

47

• GeoTessCExamples: Compiles the source in “src” with the header files in
“../GeoTessCShell/include” and links with the shared library in “../GeoTessCShell/lib” to
produce the result.

48

This page left blank.

49

11. C SHELL
This section will detail how and why the C shell was constructed in the way it was. The main idea
was to use the C++ implementation for the heavy lifting. Re-implementing the library in C would
be unreasonable and as a result the shell (also known as an interface) is very light.

The C Shell is implemented in C++ in such a way that pure C code can access the shared library
without any notion that it is C++.

NOTE: Any C Shell files that start with an underscore are not to be used by users of the C Shell.
They are private and for implementation uses only.

11.1. Headers
There are a few points that are common within each header file in the C Shell. First off, the header
files have to be 100% C code, no C++. The only caveat is the usage of macros:

#ifdef __cplusplus
extern "C"
{
#endif

<body of header file>

#ifdef __cplusplus
}
#endif

This is so that the C++ code implementing the C Shell can understand the header files and when
imported by pure C code it can understand them as well.

The second point to notice is the usage of the “GEO_TESS_EXPORT_C” definition used on every
public function. This is defined in “GeoTessCShellGlobals.h”. This is used on Windows operating
systems to define “__declspec(dllimport/dllexport)” which is used when creating dlls. This will
define the functions that need to be imported from a dll, or exported into a dll upon compile time.
On other platforms this is defined as either “extern” or nothing. Extern isn’t needed, but is used for
future extension.

11.2. Naming Conventions
• For the C wrappers of GeoTess objects they are named the same thing as the base object

with a “C” appended to the name – GeoTessModel -> GeoTessModelC. The same is done
for the files implementing the objects.

• The functions of each object keep the same base name as the C++ variants, but place a
shortened version of the object name on the front separated by an underscore.
GeoTessModel.writeModel() -> geomodel_writeModel(). This is done to avoid symbolic
conflicts with the C++ library. In the case where a function is overridden, a number starting
from 1 is appended to the name to avoid symbolic conflicts internally.

50

11.3. C Shell Source
The basic form of every function in the C Shell is to extract the C++ object from the given C
wrapper, call the appropriate method with the given arguments, and return the result watching for
any exceptions. Results may need to be converted from C++ objects to C friendly ones first. The
main issues with simply providing a wrapper to the C++ library are: exception handling, data
structures, and GeoTess objects.

11.3.1. Exception Handling
Clearly C has no notion of exceptions. To get around this limitation, every call to a GeoTess
function in the implementation is wrapped in a try-catch block. Note that this implementation does
increase the time for each call to a GeoTess function. Once each exception is caught, it is then
placed into a C data structure made for keeping a short log of exceptions. This is the ErrorCache
object. It is basically a stack that keeps the 19 latest error messages. This object will be given the
error message of the thrown exception and can be asked if it has any messages stored. The error
messages can then be popped off and used by the user of the C Shell. The interface for this object
is public to the C users.

There are two blocks in the catch statement of every try-catch. One for the GeoTessException,
which has should have a detailed explanation of the problem, and “…” meaning everything else. In
the last case, a string meaning of the exception can’t be concluded so one is generated with the file
and line number where it was caught.

All GeoTess wrappers contain a reference to an ErrorCache, in fact to the same one. The
constructor for the ErrorCache is a singleton and it keeps a reference count to know when to delete
the memory.

11.3.2. Data Structures
Data Structures such as Vectors or Maps in C++ don’t have a representation in the C standard
library. They must be converted into basic arrays for C users. Most cases go from String to char*
and from Vectors to arrays. More complicated forms are Maps to dual arrays of keys and values.
The implementations of these conversions are in “_Util.cc”.

Another type of conversion needed is the various enums in the C++ library to the int based enums
in C. The method used here was to create the C enums and have the elements listed in the same
order as the C++ enums. From there, conversion between the two is easy. The C++ enums are
put into an array, so the int value of the C enums are used as the index of that array. Starting with
the C++ enums, their index in the array is found and that index is type cast to the type of C enum
desired.

11.3.3. GeoTess Objects
The various objects that GeoTess provides also don’t have a C representation. A struct for each
object type is created with two pointers: void* and ErrorCache*. The void* points to the actual
C++ object, but hides the type allowing C code to use it. When this struct is given to the C Shell
for use as an object, the shell pulls the actual C++ object out of the void* and uses that. This keeps
the interface thin and easy to use.

51

The implementations of the constructors for the various GeoTess objects always create the wrapper
since this includes the ErrorCache with it. If an exception is thrown in the library call to the
constructor then the wrapper is returned with a null void* and the error cache holding the
exception.

The downside of using the wrappers is that sometimes a GeoTess C++ object can be associated
with another C++ object in the library so it should not be deleted, yet your use of the wrapper has
come to an end. The C Shell destructors of the wrappers allow users to select whether they want
just the wrapper freed or the wrapper and the underlying C++ object. The C header files should
document when it is safe and when it is not safe to fully delete a wrapper.

11.4. File formats
GeoTess models are stored in files in two different formats: ascii and binary. It is possible to
convert between these two formats using functionality provided in the GeoTess software.

GeoTess model information can be logically divided into 3 sections: metadata, profiles, and grid.
This information can be stored in either one or two files. If the model is stored in a single file then
the three components are written to the file in the order specified. It is also possible to write the
metadata and profile information to one file and the grid to another. In the latter case, the file with
the metadata and the profiles also includes a reference to the file that contains the grid information.

11.5. Binary Format
In this section, the format of GeoTess binary model and grid files is described.

11.5.1. Binary Model File

Table 11-1. Description of Binary Model Format Parameters.
Parameter Name Definition Binary Value

File identification string The 12 characters:
GEOTESSMODEL

12 character string NOT
preceded by integer string
length

Model file format version
number

Model file format version
number in range 1 to 65535.
The two least significant bytes
store the version number and
the two most significant bytes
are zero. This value is also
used to determine if the file is
stored in big-endian or little-
endian format.

4-byte integer in range of 1 to
65535

Software version The name of the software that
was used to generate the
content of the model, and its
version number

Integer length of string followed
by string.

Date The date that the content of the
model was generated

Integer length of string followed
by string.

52

Parameter Name Definition Binary Value

EarthShape File format version 2 or greater,
only. The name of the ellipsoid
used by GeoTess. Valid options
are SPHERE, GRS80,
GRS80_RCONST, WGS84,
WGS84_RCONST, IERS,
IERS_RCONST. This
parameter was not present in
model file format 1 (WGS84 was
assumed).

Integer length of string followed
by string.

Model description Model description. Integer length of string followed
by string.

Attribute names A list of the names of all the
attributes stored in the model,
separated by semi-colons. For
example: ‘vp; vs; density’.
nAttributes is the number of
attributes specified.

Integer length of string followed
by string.

Attribute units The units of the defined
attributes, separated by semi-
colons. For example: ‘km/sec;
km/sec; g/cc’. The number of
entries must be equal to
nAttributes.

Integer length of string followed
by string.

Layer names The names of all the layers
that define the model,
separated by semi-colons and
listed in order of increasing
radius. For example: ‘core;
mantle; crust’.
nLayers is the number of layer
names specified.

Integer length of string followed
by string.

Data Object type The type of the Data objects
stored in this model. Must be
one of DOUBLE, FLOAT,
LONG, INT, SHORT or BYTE.

Integer length of string followed
by string.

nVertices Number of vertices defined in
the grid.

Integer

Layer index – tessellation index
map.

An integer for each layer in the
model specifying the index of
the multi-layer tessellation that
supports that layer.

nLayers integers.

Profile objects A Profile object for each layer at
each vertex in the model. See
section Profiles for Profile
definitions.

nVertices * nLayers Profile
objects. Layer index varies
fastest. Profiles associated with
the same vertex are listed in
order that increases with radius.

53

Parameter Name Definition Binary Value

Grid file specifier String specifying the file in which
the grid information is stored. If
the grid file specifier is the single
character ‘*’, then the grid
information is stored in the same
file as the model data,
immediately following the gridID.
Otherwise, the grid file specifier
indicates the name of the file
that contains the grid
information.

Integer length of string followed
by string.

gridID Every grid has a unique gridID
that is stored in both the grid file
and in all the model files that
use that grid. When the model
and grid are loaded, a check is
performed to ensure that the two
gridIDs match exactly. While
any string can be used as a
gridID, an MD5 hash of the
vertices, triangle indices, level
indices and tessellation indices
is an excellent choice.

Integer length of string followed
by string.

11.5.2. Binary Profile Objects

Table 11-2. ProfileEmpty – Profile Object Consisting of a Bottom and Top Radius but no Data.
Parameter Name Definition Binary Value

Profile type index ProfileEmpty objects have index
0

Byte 0

radiusBottom Radius at the bottom of the
profile, in km

Float

radiusTop Radius at the top of the profile,
in km

Float

Table 11-3. ProfileThin – Profile Object that Represents a Zero-Thickness Profile.
Parameter Name Definition Binary Value

Profile type index ProfileThin objects have index 1 Byte 1

Radius Radius of the profile, in km. Float

Data Data object associated with this
profile

Data object

54

Table 11-4. ProfileConstant – A Finite Thickness Profile Characterized by a Single Data Object.
Parameter Name Definition Binary Value

Profile type index ProfileConstant objects have
index 2

Byte 2

radiusBottom Radius at the bottom of the
profile, in km

Float

radiusTop Radius at the top of the profile,
in km

Float

Data Data object associated with this
profile

Data object

Table 11-5. ProfileNPoints – A Profile Object Comprised of Two or More Radii and an Equal
Number of Data Objects.

Parameter Name Definition Binary Value

Profile type index ProfileNPoints objects have
index 3

Byte 3

nNodes Number of nodes on profile Integer

Radius values and Data objects Radius values and Data objects Float, followed by a Data object.
This combination is repeated
nNodes times.

Table 11-6. ProfileSurface – A Profile Object that Represents Data, but no Radius
Parameter Name Definition Binary Value

Profile type index ProfileSurface objects have
index 4

Byte 4

Data Data object associated with this
profile

Data object

11.5.3. Binary Data Objects
Data Objects consist of a 1D array of numeric values, where all of the values are of type double,
float, long, int, short or byte.

All Data Objects in the model must be of the same type and must have the same number of
elements. The number of elements in every Data Object must be equal to nAttributes, which is the
number ‘attribute names’ specified in the file. Whenever a Data Object is specified in the file format
specification sections of this document, the nAttributes data primitives that comprise the Data
Objects are specified in the file in sequential order.

55

11.5.4. Binary Grid Files

Table 11-7. Description of Binary Grid File Parameters.
Parameter Name Definition Binary Value

File identification string The 11 characters:
GEOTESSGRID

11 character string NOT
preceded by integer string
length

Grid file format version number Grid file format version number
in range 1 to 65535. The two
least significant bytes store the
version number and the two
most significant bytes are zero.
This value is also used to
determine if the file is stored in
big-endian or little-endian
format.

4 byte integer in range 1 to
65535.

Software version The name of the software that
was used to generate the
content of the grid, and its
version number

Integer length of string followed
by string.

Date The date that the content of the
grid was generated

Integer length of string followed
by string.

gridID Every grid has a unique gridID
that is stored in both the grid file
and in all the model files that
use that grid. When the model
and grid are loaded, a check is
performed to ensure that the two
gridIDs match exactly. While
any string can be used as a
gridID, an MD5 hash of the
vertices, triangle indices, level
indices and tessellation indices
is an excellent choice.

Integer length of string followed
by string.

nTessellations The number of multi-level
tessellations that define the grid

4 byte integer

nLevels The total number of tessellation
levels that define the grid. This
is the sum of the number of
tessellation levels in all the
multi-level tessellations in the
grid.

4 byte integer

nTriangles The total number of triangles
that defines the grid. This is the
sum of the number of triangles
in all tessellation levels of all
multi-level tessellations.

4 byte integer

nVertices The number of vertices that
define the grid. Each vertex is a
3D unit vector.

4 byte integer

56

Parameter Name Definition Binary Value

Tessellation level indices For each tessellation two
integers are specified: the index
of the first level and the index of
the last level plus one, that
defines the tessellation.

nTessellations*2 4-byte integers.

Level triangle indices For each tessellation level two
integers are specified: the index
of the first triangle and the index
of the last triangle plus one, that
define the level.

nLevels*2 4-byte integers.

Vertex positions For each vertex 3 doubles are
specified that define the x, y and
z components of the unit vector
corresponding to the position of
the vertex

nVertices*3 8-byte doubles

Triangle indices For each triangle 3 integers are
specified that define the indices
of the 3 vertices that define the
triangle

nTriangles*3 4-byte integers.

11.6. ASCII Format
In this section, the format of GeoTess ascii model and grid files is described.

11.6.1. ASCII Model Files

Table 11-8. Description of ASCII Model File Parameters.
Parameter Name Definition ASCII Value

File identification string The 12 characters:
GEOTESSMODEL

12 character string followed by
line terminator.

Model file format version
number

Model file format version
number in range 1 to 65535.

Integer in range 1 to 65536,
followed by a line terminator.

Software version The name of the software that
was used to generate the
content of the model, and its
version number

String followed by line
terminator.

Date The date that the content of the
model was generated

String followed by line
terminator.

EarthShape File format version 2 or greater,
only. The name of the ellipsoid
used by GeoTess. Valid options
are SPHERE, GRS80,
GRS80_RCONST, WGS84,
WGS84_RCONST, IERS,
IERS_RCONST. This
parameter was not present in

String followed by line
terminator.

57

Parameter Name Definition ASCII Value

model file format 1 (WGS84 was
assumed).

Model description. Model description. As many strings as desired,
separated by line terminators.

End model description The string
“</model_description>” on a line
by itself.

String followed by line
terminator.

Attribute names A list of the names of all the
attributes stored in the model,
separated by semi-colons. For
example: ‘vp; vs; density’.

nAttributes is the number of
attributes specified.

String “attributes: “ followed by a
semi-colon delimited list of
attribute names. List is followed
by a line terminator.

Attribute units The units of the defined
attributes, separated by semi-
colons. For example: ‘km/sec;
km/sec; g/cc’. The number of
entries must be equal to
nAttributes.

String “units: “, followed by a
semi-colon delimited list of units.
List is followed by a line
terminator.

Layer names The names of all the layers
that define the model,
separated by semi-colons and
listed in order of increasing
radius. For example: ‘core;
mantle; crust’.

nLayers is the number of layer
names specified.

String “layers: “, followed by a
semi-colon delimited list of layer
names. List is followed by a line
terminator.

Data Object type The type of the Data objects
stored in this model. Must be
one of DOUBLE, FLOAT, INT,
SHORT or BYTE.

String followed by a line
terminator.

nVertices Number of vertices defined in
the grid.

Integer, followed by a line
terminator.

Layer index – tessellation index
map.

An integer for each layer in the
model specifying the index of
the multi-layer tessellation that
supports that layer.

nLayers integers, with the last
one followed by a line
terminator.

Profile objects A Profile object for each layer at
each vertex in the model. See
section Profiles for Profile
definitions.

nVertices * nLayers Profile
objects. Layer index varies
fastest. Profiles associated with
the same vertex are listed in
order that increases with radius.

Grid file specifier String specifying the file in which
the grid information is stored. If

String followed by a line
terminator.

58

Parameter Name Definition ASCII Value

the grid file specifier is the single
character ‘*’, then the grid
information is stored in the same
file as the model data,
immediately following the gridID.
Otherwise, the grid file specifier
indicates the name of the file
that contains the grid
information.

gridID Every grid has a unique gridID
that is stored in both the grid file
and in all the model files that
use that grid. When the model
and grid are loaded, a check is
performed to ensure that the two
gridIDs match exactly. While
any string can be used as a
gridID, an MD5 hash of the
vertices, triangle indices, level
indices and tessellation indices
is an excellent choice.

String followed by a line
terminator.

11.6.2. ASCII Profile Objects

Table 11-9. ProfileEmpty – Profile Object Consisting of a Bottom and Top Radius but no Data.
Parameter Name Definition ASCII Value

Profile type index ProfileEmpty objects have index
0

Byte 0

radiusBottom Radius at the bottom of the
profile, in km

Float

radiusTop Radius at the top of the profile,
in km

Float followed by a line
terminator.

Table 11-10. ProfileThin – Profile Object that Represents a Zero-Thickness Profile.
Parameter Name Definition ASCII Value

Profile type index ProfileThin objects have index 1 Byte 1

radius Radius of the profile, in km. Float

data Data object associated with this
profile

Data object followed by a line
terminator.

59

Table 11-11. ProfileConstant – A Finite Thickness Profile Characterized by a Single Data Object.
Parameter Name Definition ASCII Value

Profile type index ProfileConstant objects have
index 2

Byte 2

radiusBottom Radius at the bottom of the
profile, in km

Float

radiusTop Radius at the top of the profile,
in km

Float

data Data object associated with this
profile

Data object followed by a line
terminator.

Table 11-12. ProfileNPoints – A Profile Object Comprised of Two or More Radii and an Equal
Number of Data Objects.

Parameter Name Definition ASCII Value

Profile type index ProfileNPoints objects have
index 3

Byte 3

nNodes Number of nodes on profile Integer

Radii and Data objects Radii and Data objects Floating point value, followed by
a Data object followed by a line
terminator. This combination is
repeated nNodes times.

Table 11-13. ProfileSurface – A Profile Object that Represents Data, but no Radius.
Parameter Name Definition ASCII Value

Profile type index ProfileSurface objects have
index 4

Byte 4

Data Data object associated with this
profile

Data object followed by a line
terminator.

11.6.3. ASCII Data Objects
Data Objects consist of a 1D array of numeric values, where all of the values are of type double,
float, int, short or byte.

All Data Objects in the model must be of the same type and must have the same number of
elements. The number of elements of every Data Objects must be equal to nAttributes, which is the
number of ‘attribute names’ specified in the file. Whenever a Data Object is specified in the file
format specification sections of this document, the nAttributes data primitives that comprise the Data
Objects are specified in the file in sequential order.

60

11.6.4. ASCII Grid Files

Table 11-14. Description of ASCII Grid File Parameters.
Parameter Name Value ASCII Value

File identification string The 11 characters:
GEOTESSGRID

11 character string followed by
line terminator.

Grid file format version number Grid file format version number
in range 1 to 65535.

Integer in range 1 to 65536,
followed by a line terminator.

Software version The name of the software that
was used to generate the
content of the grid, and its
version number

String followed by line
terminator.

Date The date that the content of the
grid was generated

String followed by line
terminator.

Comment Comment that serves to make
the file more readable.

ASCII text starting with ’#’ and
ending with a line terminator.

gridID Every grid has a unique gridID
that is stored in both the grid file
and in all the model files that
use that grid. When the model
and grid are loaded, a check is
performed to ensure that the two
gridIDs match exactly. While
any string can be used as a
gridID, an MD5 hash of the
vertices, triangle indices, level
indices and tessellation indices
is an excellent choice.

String followed by a line
terminator.

Comment Comment that serves to make
the file more readable.

ASCII text starting with ’#’ and
ending with a line terminator.

nTessellations The number of multi-level
tessellations that define the grid

Integer

nLevels The total number of tessellation
levels that define the grid. This
is the sum of the number of
tessellation levels in all the
multi-level tessellations in the
grid.

Integer

nTriangles The total number of triangles
that define the grid. This is the
sum of the number of triangles
in all tessellation levels of all
multi-level tessellations.

Integer

nVertices The number of vertices that
define the grid. Each vertex is a
3D unit vector.

Integer followed by line
terminator.

Comment Comment that serves to make
the file more readable.

ASCII text starting with ’#’ and
ending with a line terminator.

61

Parameter Name Value ASCII Value

Tessellation level indices For each tessellation two
integers are specified: the index
of the first level and the index of
the last level plus one, that
defines the tessellation.

nTessellations*2 integers with
each pair of integers followed by
a line terminator.

Comment Comment that serves to make
the file more readable.

ASCII text starting with ’#’ and
ending with a line terminator.

Level triangle indices For each tessellation level two
integers are specified: the index
of the first triangle and the index
of the last triangle plus one, that
define the level.

nLevels*2 integers with each
pair of integers followed by a
line terminator.

Comment Comment that serves to make
the file more readable.

ASCII text starting with ’#’ and
ending with a line terminator.

Vertex positions For each vertex 3 doubles are
specified that define the x, y and
z components of the unit vector
corresponding to the position of
the vertex

nVertices*3 doubles with each
triple of doubles followed by a
line terminator.

Comment Comment that serves to make
the file more readable.

ASCII text starting with ’#’ and
ending with a line terminator.

Triangle indices For each triangle 3 integers are
specified that define the indices
of the 3 vertices that define the
triangle

nTriangles*3 integers with each
triple of integers followed by a
line terminator.

62

REFERENCES

[1] Snyder, J. P., Map Projections – A Working Manual, USGS Prof. Paper 1395, 1987.
[2] Vincenty, T., Survey Review, 23, No 176, p 88-93, 1975
[3] Zwillinger, D., CRC Standard Mathematical Tables and Formulae, 31rst Edition, 2003.

63

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Patrick Hammond 06371 phammon@sandia.gov

Chris Young 06371 cjyoung@sandia.gov

Sanford Ballard 06752 sballar@sandia.gov

Andrea Conley 06752 acconle@sandia.gov

John Merchant 06752 bjmerch@sandia.gov

Rigobert Tibi 06752 rtibi@sandia.gov

Steve Vigil 06752 srvigil@sandia.gov

Stephanie Teich-McGoldrick 06756 steichm@sandia.gov

Brian Young 08861 byoung@sandia.gov

Technical Library 01977 sanddocs@sandia.gov

Email—External (encrypt for OUO)

Name Company Email Address Company Name

Jorge Roman-Nieves
jorge.roman-
nieves.1@us.af.mil AFTAC

Gregory Wagner gregory.wagner@us.af.mil AFTAC

64

This page left blank

65

This page left blank

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

