61 void inferDataNoise();
63 void inferLogDataNoise();
69 void setModelRVinput(
int pdim,
int order,
Array1D<int>& rndInd,
string pdfType,
string pcType);
73 void setPrior(
string priorType,
double priora,
double priorb);
160 Lik_Full(
double bdw,
int nsam){this->bdw_=bdw; this->nsam_=nsam;
return;}
183 Lik_Marg(
double bdw,
int nsam){this->bdw_=bdw; this->nsam_=nsam;
return;}
207 Lik_MVN(
double nugget){this->nugget_=nugget;
return;}
259 Lik_ABC(
double eps){this->abceps_=eps;
return;}
299 Lik_Koh(
double corLength){ this->extraInferredParams_=1;this->corLength_=corLength;
return;}
1D Array class for any type T
2D Array class for any type T
Definition: Array1D.h:472
Definition: Array1D.h:262
Stores data of any type T in a 1D array.
Definition: Array1D.h:61
Derived class for ABC likelihood.
Definition: post.h:256
Lik_ABC(double eps)
Constructor given ABC epsilon.
Definition: post.h:259
~Lik_ABC()
Destructor.
Definition: post.h:261
double abceps_
ABC epsilon.
Definition: post.h:268
Derived class for ABC-mean likelihood.
Definition: post.h:276
~Lik_ABCm()
Destructor.
Definition: post.h:281
Lik_ABCm(double eps)
Constructor given ABC epsilon.
Definition: post.h:279
double abceps_
ABC epsilon.
Definition: post.h:288
Derived class for classical likelihood.
Definition: post.h:314
Lik_Classical()
Constructor.
Definition: post.h:317
~Lik_Classical()
Destructor.
Definition: post.h:319
Derived class for error-in-variable likelihood.
Definition: post.h:330
Lik_Eov()
Constructor.
Definition: post.h:333
~Lik_Eov()
Destructor.
Definition: post.h:335
Derived class for full likelihood.
Definition: post.h:157
~Lik_Full()
Destructor.
Definition: post.h:162
double bdw_
KDE bandwidth.
Definition: post.h:169
int nsam_
KDE sample size.
Definition: post.h:171
Lik_Full(double bdw, int nsam)
Constructor given KDE bandwidth and sample size.
Definition: post.h:160
Derived class for gaussian-marginal likelihood with discrete parameter.
Definition: post.h:240
~Lik_GausMargD()
Destructor.
Definition: post.h:245
Lik_GausMargD()
Constructor.
Definition: post.h:243
double evalLogLik(Array1D< double > &m)
Evaluate log-likelihood.
Derived class for gaussian-marginal likelihood.
Definition: post.h:224
Lik_GausMarg()
Constructor.
Definition: post.h:227
~Lik_GausMarg()
Destructor.
Definition: post.h:229
Derived class for Kennedy-O'Hagan likelihood.
Definition: post.h:296
Lik_Koh(double corLength)
Constructor given correlation length.
Definition: post.h:299
double corLength_
Definition: post.h:306
~Lik_Koh()
Destructor.
Definition: post.h:301
Derived class for mvn likelihood.
Definition: post.h:204
double nugget_
Nugget size.
Definition: post.h:216
~Lik_MVN()
Destructor.
Definition: post.h:209
Lik_MVN(double nugget)
Constructor given fiagonal nugget.
Definition: post.h:207
Derived class for marginal likelihood.
Definition: post.h:180
int nsam_
KDE sample size.
Definition: post.h:194
double bdw_
KDE bandwidth.
Definition: post.h:192
Lik_Marg(double bdw, int nsam)
Constructor given KDE bandwidth and sample size.
Definition: post.h:183
~Lik_Marg()
Destructor.
Definition: post.h:185
multivariate RV parameterized by PC expansions
Definition: mrv.h:48
posterior evaluation with various likelihood and prior options
Definition: post.h:48
Array1D< double > yDatam_
ydata averaged per measurement (in case more than one y is given for each x)
Definition: post.h:98
Array2D< double > xData_
xdata
Definition: post.h:89
void * funcinfo_
Auxiliary information for function evaluation.
Definition: post.h:119
Array1D< double > dataNoiseSig_
Data noise stdev.
Definition: post.h:114
bool dataNoiseLogFlag_
Flag to check if data noise logarithm is used.
Definition: post.h:112
double priora_
Prior parameter #1.
Definition: post.h:140
int nData_
Number of data points.
Definition: post.h:100
int verbosity_
Verbosity level.
Definition: post.h:147
Array1D< double > lower_
Lower and upper bounds on parameters.
Definition: post.h:132
~Post()
Destructor.
Definition: post.h:54
int pDim_
Dimensionality of parameter space (p-space)
Definition: post.h:106
int chDim_
Dimensionality of posterior input.
Definition: post.h:108
Array1D< int > rndInd_
Indices of randomized inputs.
Definition: post.h:128
Array2D< double > fixIndNom_
Indices and nominal values for fixed inputs.
Definition: post.h:130
int nEach_
Number of samples at each input.
Definition: post.h:102
Array2D< double > yData_
ydata
Definition: post.h:96
bool inferDataNoise_
Flag for data noise inference.
Definition: post.h:110
int extraInferredParams_
Number of extra inferred parameters, such as data noise or Koh variance.
Definition: post.h:121
int xDim_
Dimensionality of x-space.
Definition: post.h:104
double priorb_
Prior parameter #2.
Definition: post.h:142
int ncat_
Number of categories.
Definition: post.h:123
string priorType_
Prior type.
Definition: post.h:138
Mrv * Mrv_
Pointer to a multivariate PC RV object.
Definition: post.h:126
virtual double evalLogLik(Array1D< double > &m)
Dummy evaluation of log-likelihood.
Definition: post.h:89
string pdfType_
Input parameter PDF type.
Definition: post.h:134
string rvpcType_
PC type parameter for the r.v.
Definition: post.h:136
Header for multivariate random variable class.