15.3. Elastic Orthotropic Fail Model
BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_FAIL
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Required parameters
#
E11 = <real>e11
E22 = <real>e22
E33 = <real>e33
NU12 = <real>nu12
NU13 = <real>nu13
NU23 = <real>nu23
G12 = <real>g12
G13 = <real>g13
G23 = <real>g23
#
COORDINATE SYSTEM = <string>coordinate_system_name
#
# Normal thresholds
#
TENSILE_MATRIX_STRENGTH_11 = <real>f1mp
COMPRESSIVE_MATRIX_STRENGTH_11 = <real>f1mn
TENSILE_FIBER_STRENGTH_11 = <real>f1fp
COMPRESSIVE_FIBER_STRENGTH_11 = <real>f1fn
TENSILE_MATRIX_STRENGTH_22 = <real>f2mp
COMPRESSIVE_MATRIX_STRENGTH_22 = <real>f2mn
TENSILE_FIBER_STRENGTH_22 = <real>f2fp
COMPRESSIVE_FIBER_STRENGTH_22 = <real>f2fn
TENSILE_MATRIX_STRENGTH_33 = <real>f3mp
COMPRESSIVE_MATRIX_STRENGTH_33 = <real>f3mn
TENSILE_FIBER_STRENGTH_33 = <real>f3fp
COMPRESSIVE_FIBER_STRENGTH_33 = <real>f3fn
#
# Shear thresholds
#
SHEAR_MATRIX_STRENGTH_12 = <real>s12m
SHEAR_FIBER_STRENGTH_12 = <real>s12f
SHEAR_MATRIX_STRENGTH_23 = <real>s23m
SHEAR_FIBER_STRENGTH_23 = <real>s23f
SHEAR_MATRIX_STRENGTH_13 = <real>s13m
SHEAR_FIBER_STRENGTH_13 = <real>s13f
#
# Fracture parameters
#
TENSILE_FRACTURE_ENERGY_11 = <real>gi1p
COMPRESSIVE_FRACTURE_ENERGY_11 = <real>gi1n
TENSILE_FRACTURE_ENERGY_22 = <real>gi2p
COMPRESSIVE_FRACTURE_ENERGY_22 = <real>gi2n
TENSILE_FRACTURE_ENERGY_33 = <real>gi3p
COMPRESSIVE_FRACTURE_ENERGY_33 = <real>gi3n
SHEAR_FRACTURE_ENERGY_12 = <real>gii12
SHEAR_FRACTURE_ENERGY_23 = <real>gii23
SHEAR_FRACTURE_ENERGY_13 = <real>gii13
CHARACTERISTIC_LENGTH = <real>l_star
#
# Damage evolution parameters
#
MAXIMUM_COMPRESSIVE_DAMAGE_11 = <real>dmax1n
MAXIMUM_COMPRESSIVE_DAMAGE_22 = <real>dmax2n
MAXIMUM_COMPRESSIVE_DAMAGE_33 = <real>dmax3n
COMPRESSION_COUPLING_FACTOR_11 = <real>a1pn
COMPRESSION_COUPLING_FACTOR_22 = <real>a2pn
COMPRESSION_COUPLING_FACTOR_33 = <real>a3pn
TENSILE_DAMAGE_MODULUS_11 = <real>k1p
COMPRESSIVE_DAMAGE_MODULUS_11 = <real>k1n
TENSILE_DAMAGE_MODULUS_22 = <real>k2p
COMPRESSIVE_DAMAGE_MODULUS_22 = <real>k2n
TENSILE_DAMAGE_MODULUS_33 = <real>k3p
COMPRESSIVE_DAMAGE_MODULUS_33 = <real>k3n
SHEAR_DAMAGE_MODULUS_12 = <real>k12
SHEAR_DAMAGE_MODULUS_23 = <real>k23
SHEAR_DAMAGE_MODULUS_13 = <real>k13
HARDENING_EXPONENT_11 = <real>n11
HARDENING_EXPONENT_22 = <real>n22
HARDENING_EXPONENT_33 = <real>n33
HARDENING_EXPONENT_12 = <real>n12
HARDENING_EXPONENT_23 = <real>n23
HARDENING_EXPONENT_13 = <real>n13
#
# Optional parameters follow
# Orientation Parameters
#
ANGLE_1_ABSCISSA = <real>angle_1_abscissa
ANGLE_2_ABSCISSA = <real>angle_2_abscissa
ANGLE_3_ABSCISSA = <real>angle_3_abscissa
ROTATION_AXIS_1 = <real>rotation_axis_1
ROTATION_AXIS_2 = <real>rotation_axis_2
ROTATION_AXIS_3 = <real>rotation_axis_3
ANGLE_1_FUNCTION = <string>angle_1_function_name
ANGLE_2_FUNCTION = <string>angle_2_function_name
ANGLE_3_FUNCTION = <string>angle_3_function_name
#
# Coefficient of thermal expansion functions
#
THERMAL_STRAIN_11_FUNCTION = <string>cte11_function_name
THERMAL_STRAIN_22_FUNCTION = <string>cte22_function_name
THERMAL_STRAIN_33_FUNCTION = <string>cte33_function_name
#
# Temperature dependent property functions
#
E11_FUNCTION = <string>e11_function_name
E22_FUNCTION = <string>e22_function_name
E33_FUNCTION = <string>e33_function_name
NU12_FUNCTION = <string>nu12_function_name
NU23_FUNCTION = <string>nu23_function_name
NU13_FUNCTION = <string>nu13_function_name
G12_FUNCTION = <string>g12_function_name
G23_FUNCTION = <string>g23_function_name
G13_FUNCTION = <string>g13_function_name
#
# Strain rate dependent parameters
#
REFERENCE_STRAIN_RATE = <real>epsdot0
ELASTIC_RATE_COEFFICIENT_11 = <real>ce11
ELASTIC_RATE_COEFFICIENT_22 = <real>ce22
ELASTIC_RATE_COEFFICIENT_33 = <real>ce33
ELASTIC_RATE_COEFFICIENT_12 = <real>ce12
ELASTIC_RATE_COEFFICIENT_23 = <real>ce23
ELASTIC_RATE_COEFFICIENT_13 = <real>ce13
FIBER_STRENGTH_RATE_COEFFICIENT_11 = <real>cf11
FIBER_STRENGTH_RATE_COEFFICIENT_22 = <real>cf22
FIBER_STRENGTH_RATE_COEFFICIENT_33 = <real>cf33
FIBER_STRENGTH_RATE_COEFFICIENT_12 = <real>cf12
FIBER_STRENGTH_RATE_COEFFICIENT_23 = <real>cf23
FIBER_STRENGTH_RATE_COEFFICIENT_13 = <real>cf13
MATRIX_STRENGTH_RATE_COEFFICIENT_11 = <real>cm11
MATRIX_STRENGTH_RATE_COEFFICIENT_22 = <real>cm22
MATRIX_STRENGTH_RATE_COEFFICIENT_33 = <real>cm33
MATRIX_STRENGTH_RATE_COEFFICIENT_12 = <real>cm12
MATRIX_STRENGTH_RATE_COEFFICIENT_23 = <real>cm23
MATRIX_STRENGTH_RATE_COEFFICIENT_13 = <real>cm13
END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_FAIL]
The elastic orthotropic fail model is an empirically based constitutive relation that is useful for modeling polymer matrix composite structures. Refer to the SAND report by English [[1]] for a full description of the material model theory and usage.
This model has identical input requirements to the Elastic Orthotropic Model detailed in Section 15.1, supplemented with additional parameters for failure modeling. The following is a brief description of additional inputs required for the Elastic Orthotropic Fail Model.
The strengths for each component of damage are given by the commands:
# Normal thresholds TENSILE_MATRIX_STRENGTH_11 = <real>f1mp COMPRESSIVE_MATRIX_STRENGTH_11 = <real>f1mn TENSILE_FIBER_STRENGTH_11 = <real>f1fp COMPRESSIVE_FIBER_STRENGTH_11 = <real>f1fn TENSILE_MATRIX_STRENGTH_22 = <real>f2mp COMPRESSIVE_MATRIX_STRENGTH_22 = <real>f2mn TENSILE_FIBER_STRENGTH_22 = <real>f2fp COMPRESSIVE_FIBER_STRENGTH_22 = <real>f2fn TENSILE_MATRIX_STRENGTH_33 = <real>f3mp COMPRESSIVE_MATRIX_STRENGTH_33 = <real>f3mn TENSILE_FIBER_STRENGTH_33 = <real>f3fp COMPRESSIVE_FIBER_STRENGTH_33 = <real>f3fn # Shear thresholds SHEAR_MATRIX_STRENGTH_12 = <real>s12m SHEAR_FIBER_STRENGTH_12 = <real>s12f SHEAR_MATRIX_STRENGTH_23 = <real>s23m SHEAR_FIBER_STRENGTH_23 = <real>s23f SHEAR_MATRIX_STRENGTH_13 = <real>s13m SHEAR_FIBER_STRENGTH_13 = <real>s13f
The fracture energies (energy per unit area) for each plane of damage are given by the commands:
# Fracture parameters TENSILE_FRACTURE_ENERGY_11 = <real>gi1p COMPRESSIVE_FRACTURE_ENERGY_11 = <real>gi1n TENSILE_FRACTURE_ENERGY_22 = <real>gi2p COMPRESSIVE_FRACTURE_ENERGY_22 = <real>gi2n TENSILE_FRACTURE_ENERGY_33 = <real>gi3p COMPRESSIVE_FRACTURE_ENERGY_33 = <real>gi3n SHEAR_FRACTURE_ENERGY_12 = <real>gii12 SHEAR_FRACTURE_ENERGY_23 = <real>gii23 SHEAR_FRACTURE_ENERGY_13 = <real>gii13 CHARACTERISTIC_LENGTH = <real>l_star
The total energy density dissipated (the area under the stress-strain curve) is given by the fracture energy divided by the characteristic length
l_star.The maximum allowable damage values under compression on each plane are given by the commands:
MAXIMUM_COMPRESSIVE_DAMAGE_11 = <real>dmax1n MAXIMUM_COMPRESSIVE_DAMAGE_22 = <real>dmax2n MAXIMUM_COMPRESSIVE_DAMAGE_33 = <real>dmax3n
The proportion of tensile damage translating to compressive damage for each of the orthotropic planes are given by the commands:
COMPRESSION_COUPLING_FACTOR_11 = <real>a1pn COMPRESSION_COUPLING_FACTOR_22 = <real>a2pn COMPRESSION_COUPLING_FACTOR_33 = <real>a3pn
The slopes of the matrix mode damage portion of the stress-strain curve, or damage moduli terms, are given by the commands:
TENSILE_DAMAGE_MODULUS_11 = <real>k1p COMPRESSIVE_DAMAGE_MODULUS_11 = <real>k1n TENSILE_DAMAGE_MODULUS_22 = <real>k2p COMPRESSIVE_DAMAGE_MODULUS_22 = <real>k2n TENSILE_DAMAGE_MODULUS_33 = <real>k3p COMPRESSIVE_DAMAGE_MODULUS_33 = <real>k3n SHEAR_DAMAGE_MODULUS_12 = <real>k12 SHEAR_DAMAGE_MODULUS_23 = <real>k23 SHEAR_DAMAGE_MODULUS_13 = <real>k13
Small nonlinearity in the matrix mode damage evolution can be added using the hardening exponents for each of the orthotropic planes via the commands:
HARDENING_EXPONENT_11 = <real>n11 HARDENING_EXPONENT_22 = <real>n22 HARDENING_EXPONENT_33 = <real>n33 HARDENING_EXPONENT_12 = <real>n12 HARDENING_EXPONENT_23 = <real>n23 HARDENING_EXPONENT_13 = <real>n13
Strain rate dependence is defined by the commands:
REFERENCE_STRAIN_RATE = <real>epsdot0 ELASTIC_RATE_COEFFICIENT_11 = <real>ce11 ELASTIC_RATE_COEFFICIENT_22 = <real>ce22 ELASTIC_RATE_COEFFICIENT_33 = <real>ce33 ELASTIC_RATE_COEFFICIENT_12 = <real>ce12 ELASTIC_RATE_COEFFICIENT_23 = <real>ce23 ELASTIC_RATE_COEFFICIENT_13 = <real>ce13 FIBER_STRENGTH_RATE_COEFFICIENT_11 = <real>cf11 FIBER_STRENGTH_RATE_COEFFICIENT_22 = <real>cf22 FIBER_STRENGTH_RATE_COEFFICIENT_33 = <real>cf33 FIBER_STRENGTH_RATE_COEFFICIENT_12 = <real>cf12 FIBER_STRENGTH_RATE_COEFFICIENT_23 = <real>cf23 FIBER_STRENGTH_RATE_COEFFICIENT_13 = <real>cf13 MATRIX_STRENGTH_RATE_COEFFICIENT_11 = <real>cm11 MATRIX_STRENGTH_RATE_COEFFICIENT_22 = <real>cm22 MATRIX_STRENGTH_RATE_COEFFICIENT_33 = <real>cm33 MATRIX_STRENGTH_RATE_COEFFICIENT_12 = <real>cm12 MATRIX_STRENGTH_RATE_COEFFICIENT_23 = <real>cm23 MATRIX_STRENGTH_RATE_COEFFICIENT_13 = <real>cm13
The rate dependence is calculated with respect to the reference strain rate
epsdot0. The rate coefficients for the purely empirical rate equation in each material direction are given for elastic moduli and failure parameters by the scalar values of the elastic rate coefficientsceijand fiber and matrix strength rate coefficientscfijandcmij.
Warning
The ELASTIC_ORTHOTROPIC_FAIL model has not been tested in conjunction with the control stiffness implicit solver block.
Output variables available for this model are listed in the Elastic Orthotropic Model in Table 15.1 and Table 15.2.
Index |
Name |
Description |
|---|---|---|
43 |
|
Damage evolution variable 11, matrix, tension |
44 |
|
Damage evolution variable 11, fiber, tension |
45 |
|
Damage evolution variable 11, matrix, compression |
46 |
|
Damage evolution variable 11, fiber, compression |
47 |
|
Damage evolution variable 22, matrix, tension |
48 |
|
Damage evolution variable 22, fiber, tension |
49 |
|
Damage evolution variable 22, matrix, compression |
50 |
|
Damage evolution variable 22, fiber, compression |
51 |
|
Damage evolution variable 33, matrix, tension |
52 |
|
Damage evolution variable 33, fiber, tension |
53 |
|
Damage evolution variable 33, matrix, compression |
54 |
|
Damage evolution variable 33, fiber, compression |
55 |
|
Normal damage 11, matrix, tension |
56 |
|
Normal damage 11, fiber, tension |
57 |
|
Normal damage 11, matrix, compression |
58 |
|
Normal damage 11, fiber, compression |
59 |
|
Normal damage 22, matrix, tension |
60 |
|
Normal damage 22, fiber, tension |
61 |
|
Normal damage 22, matrix, compression |
62 |
|
Normal damage 22, fiber, compression |
63 |
|
Normal damage 33, matrix, tension |
64 |
|
Normal damage 33, fiber, tension |
65 |
|
Normal damage 33, matrix, compression |
66 |
|
Normal damage 33, fiber, compression |
67 |
|
Shear damage 12, matrix |
68 |
|
Shear damage 12, fiber |
69 |
|
Shear damage 23, matrix |
70 |
|
Shear damage 23, fiber |
71 |
|
Shear damage 13, matrix |
72 |
|
Shear damage 13, fiber |
73 |
|
Effective and active normal damage 11 |
74 |
|
Effective and active normal damage 22 |
75 |
|
Effective and active normal damage 33 |
76 |
|
Effective and active shear damage 12 |
77 |
|
Effective and active shear damage 23 |
78 |
|
Effective and active shear damage 31 |
Warning
Strongly rate-dependent models may fare poorly in implicit quasistatic solution. In implicit analyses the rate term used to evaluate the current load step is the rate seen by the model in the previous load step. This may cause the solution to oscillate between high- and low-rate equilibrium states from step to step.