15.20. NLVE 3D Orthotropic Model
BEGIN PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC
#
# Elastic constants
#
YOUNGS MODULUS = <real>
POISSONS RATIO = <real>
SHEAR MODULUS = <real>
BULK MODULUS = <real>
LAMBDA = <real>
TWO MU = <real>
#
# Material coordinates system definition
#
COORDINATE SYSTEM = <string> coordinate_system_name
DIRECTION FOR ROTATION = <real> 1|2|3
ALPHA = <real> (degrees)
SECOND DIRECTION FOR ROTATION = <real> 1|2|3
SECOND ALPHA = <real> (degrees)
#
#
#
FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name
FICTITIOUS LOGA SCALE FACTOR = <real>fict_loga_scale_factor
#
# In each of the five "PRONY" command lines and in
# the RELAX TIME command line, the value of i can be from
# 1 through 30
#
1PSI PRONY <integer>i = <real>psi1_i
2PSI PRONY <integer>i = <real>psi2_i
3PSI PRONY <integer>i = <real>psi3_i
4PSI PRONY <integer>i = <real>psi4_i
5PSI PRONY <integer>i = <real>psi5_i
RELAX TIME <integer>i = <real>tau_i
REFERENCE TEMP = <real>tref
REFERENCE DENSITY = <real>rhoref
WLF C1 = <real>wlf_c1
WLF C2 = <real>wlf_c2
B SHIFT CONSTANT = <real>b_shift
SHIFT REF VALUE = <real>shift_ref
WWBETA 1PSI = <real>wwb_1psi
WWTAU 1PSI = <real>wwt_1psi
WWBETA 2PSI = <real>wwb_2psi
WWTAU 2PSI = <real>wwt_2psi
WWBETA 3PSI = <real>wwb_3psi
WWTAU 3PSI = <real>wwt_3psi
WWBETA 4PSI = <real>wwb_4psi
WWTAU 4PSI = <real>wwt_4psi
WWBETA 5PSI = <real>wwb_5psi
WWTAU 5PSI = <real>wwt_5psi
DOUBLE INTEG FACTOR = <real>dble_int_fac
REF RUBBERY HCAPACITY = <real>hcapr
REF GLASSY HCAPACITY = <real>hcapg
GLASS TRANSITION TEM = <real>tg
REF GLASSY C11 = <real>c11g
REF RUBBERY C11 = <real>c11r
REF GLASSY C22 = <real>c22g
REF RUBBERY C22 = <real>c22r
REF GLASSY C33 = <real>c33g
REF RUBBERY C33 = <real>c33r
REF GLASSY C12 = <real>c12g
REF RUBBERY C12 = <real>c12r
REF GLASSY C13 = <real>c13g
REF RUBBERY C13 = <real>c13r
REF GLASSY C23 = <real>c23g
REF RUBBERY C23 = <real>c23r
REF GLASSY C44 = <real>c44g
REF RUBBERY C44 = <real>c44r
REF GLASSY C55 = <real>c55g
REF RUBBERY C55 = <real>c55r
REF GLASSY C66 = <real>c66g
REF RUBBERY C66 = <real>c66r
REF GLASSY CTE1 = <real>cte1g
REF RUBBERY CTE1 = <real>cte1r
REF GLASSY CTE2 = <real>cte2g
REF RUBBERY CTE2 = <real>cte2r
REF GLASSY CTE3 = <real>cte3g
REF RUBBERY CTE3 = <real>cte3r
LINEAR VISCO TEST = <real>lvt
T DERIV GLASSY C11 = <real>dc11gdT
T DERIV RUBBERY C11 = <real>dc11rdT
T DERIV GLASSY C22 = <real>dc22gdT
T DERIV RUBBERY C22 = <real>dc22rdT
T DERIV GLASSY C33 = <real>dc33gdT
T DERIV RUBBERY C33 = <real>dc33rdT
T DERIV GLASSY C12 = <real>dc12gdT
T DERIV RUBBERY C12 = <real>dc12rdT
T DERIV GLASSY C13 = <real>dc13gdT
T DERIV RUBBERY C13 = <real>dc13rdT
T DERIV GLASSY C23 = <real>dc23gdT
T DERIV RUBBERY C23 = <real>dc23rdT
T DERIV GLASSY C44 = <real>dc44gdT
T DERIV RUBBERY C44 = <real>dc44rdT
T DERIV GLASSY C55 = <real>dc55gdT
T DERIV RUBBERY C55 = <real>dc55rdT
T DERIV GLASSY C66 = <real>dc66gdT
T DERIV RUBBERY C66 = <real>dc66rdT
T DERIV GLASSY CTE1 = <real>dcte1gdT
T DERIV RUBBERY CTE1 = <real>dcte1rdT
T DERIV GLASSY CTE2 = <real>dcte2gdT
T DERIV RUBBERY CTE2 = <real>dcte2rdT
T DERIV GLASSY CTE3 = <real>dcte3gdT
T DERIV RUBBERY CTE3 = <real>dcte3rdT
T DERIV GLASSY HCAPACITY = <real>dhcapgdT
T DERIV RUBBERY HCAPACITY = <real>dhcaprdT
REF PSIC = <real>psic_ref
T DERIV PSIC = <real>dpsicdT
T 2DERIV PSIC = <real>d2psicdT2
PSI EQ 2T = <real>psitt
PSI EQ 3T = <real>psittt
PSI EQ 4T = <real>psitttt
PSI EQ XX 11 = <real>psiXX11
PSI EQ XX 22 = <real>psiXX22
PSI EQ XX 33 = <real>psiXX33
PSI EQ XX 12 = <real>psiXX12
PSI EQ XX 13 = <real>psiXX13
PSI EQ XX 23 = <real>psiXX23
PSI EQ XX 44 = <real>psiXX44
PSI EQ XX 55 = <real>psiXX55
PSI EQ XX 66 = <real>psiXX66
PSI EQ XXT 11 = <real>psiXXT11
PSI EQ XXT 22 = <real>psiXXT22
PSI EQ XXT 33 = <real>psiXXT33
PSI EQ XXT 12 = <real>psiXXT12
PSI EQ XXT 13 = <real>psiXXT13
PSI EQ XXT 23 = <real>psiXXT23
PSI EQ XXT 44 = <real>psiXXT44
PSI EQ XXT 55 = <real>psiXXT55
PSI EQ XXT 66 = <real>psiXXT66
PSI EQ XT 1 = <real>psiXT1
PSI EQ XT 2 = <real>psiXT2
PSI EQ XT 3 = <real>psiXT3
PSI EQ XTT 1 = <real>psiXTT1
PSI EQ XTT 2 = <real>psiXTT2
PSI EQ XTT 3 = <real>psiXTT3
REF PSIA 11 = <real>psiA11
REF PSIA 22 = <real>psiA22
REF PSIA 33 = <real>psiA33
REF PSIA 12 = <real>psiA12
REF PSIA 13 = <real>psiA13
REF PSIA 23 = <real>psiA23
REF PSIA 44 = <real>psiA44
REF PSIA 55 = <real>psiA55
REF PSIA 66 = <real>psiA66
T DERIV PSIA 11 = <real>dpsiA11dT
T DERIV PSIA 22 = <real>dpsiA22dT
T DERIV PSIA 33 = <real>dpsiA33dT
T DERIV PSIA 12 = <real>dpsiA12dT
T DERIV PSIA 13 = <real>dpsiA13dT
T DERIV PSIA 23 = <real>dpsiA23dT
T DERIV PSIA 44 = <real>dpsiA44dT
T DERIV PSIA 55 = <real>dpsiA55dT
T DERIV PSIA 66 = <real>dpsiA66dT
REF PSIB 1 = <real> psiB1
REF PSIB 2 = <real> psiB2
REF PSIB 3 = <real> psiB3
T DERIV PSIB 1 = <real> dpsiB1dT
T DERIV PSIB 2 = <real> dpsiB2dT
T DERIV PSIB 3 = <real> dpsiB3dT
PSI POT TT = <real> psipotTT
PSI POT TTT = <real> psipotTTT
PSI POT TTTT = <real> psipotTTTT
PSI POT XT 1 = <real> psipotXT1
PSI POT XT 2 = <real> psipotXT2
PSI POT XT 3 = <real> psipotXT3
PSI POT XTT 1 = <real> psipotXTT1
PSI POT XTT 2 = <real> psipotXTT2
PSI POT XTT 3 = <real> psipotXTT3
PSI POT XXT 11 = <real> psipotXXT11
PSI POT XXT 22 = <real> psipotXXT22
PSI POT XXT 33 = <real> psipotXXT33
PSI POT XXT 12 = <real> psipotXXT12
PSI POT XXT 13 = <real> psipotXXT13
PSI POT XXT 23 = <real> psipotXXT23
PSI POT XXT 44 = <real> psipotXXT44
PSI POT XXT 55 = <real> psipotXXT55
PSI POT XXT 66 = <real> psipotXXT66
END [PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC]
The NLVE three-dimensional orthotropic model is a nonlinear viscoelastic orthotropic continuum model that describes the behavior of fiber-reinforced polymer-matrix composites. In addition to being able to model the linear elastic and linear viscoelastic behaviors of such composites, it also can capture both “weak” and “strong” nonlinear viscoelastic effects such as stress dependence of the creep compliance and viscoelastic yielding. This model can be used in both Presto and Adagio.
Because the NLVE model is still under active development and also because it has an extensive list of command lines, we have not followed the typical approach in documenting this model.