16.1. Elastic Orthotropic Model

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC
    #
    # Elastic constants
    YOUNGS MODULUS = <real>youngs_modulus
    POISSONS RATIO = <real>poissons_ratio
    SHEAR MODULUS = <real>shear_modulus
    BULK MODULUS = <real>bulk_modulus
    LAMBDA = <real>lambda
    TWO MU = <real>two_mu
    #
    # required parameters
    E11 = <real>e11
    E22 = <real>e22
    E33 = <real>e33
    NU12 = <real>nu12
    NU13 = <real>nu13
    NU23 = <real>nu23
    G12 = <real>g12
    G13 = <real>g13
    G23 = <real>g23
    COORDINATE SYSTEM = <string>coordinate_system_name
    #
    # optional parameters
    ANGLE_1_ABSCISSA = <real>angle_1_abscissa
    ANGLE_2_ABSCISSA = <real>angle_2_abscissa
    ANGLE_3_ABSCISSA = <real>angle_3_abscissa
    ROTATION_AXIS_1 = <real>rotation_axis_1
    ROTATION_AXIS_2 = <real>rotation_axis_2
    ROTATION_AXIS_3 = <real>rotation_axis_3
    ANGLE_1_FUNCTION = <string>angle_1_function_name
    ANGLE_2_FUNCTION = <string>angle_2_function_name
    ANGLE_3_FUNCTION = <string>angle_3_function_name
    THERMAL_STRAIN_11_FUNCTION =
      <string>thermal_strain_11_function_name
    THERMAL_STRAIN_22_FUNCTION =
      <string>thermal_strain_22_function_name
    THERMAL_STRAIN_33_FUNCTION =
      <string>thermal_strain_33_function_name
END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC]

The elastic orthotropic model is a Kirchhoff linear elastic constitutive relation that is useful for modeling polymer matrix composite structures undergoing small strains. Required inputs are

  • two of the five general elastic material constants,

  • directional properties, and

  • the coordinate system.

The following is a brief description of each input.

  • See the Sierra/SM User Manual for more information on elastic constants input.

  • In each material direction, moduli \(E_{11}\), \(E_{22}\), and \(E_{33}\) are defined with the E11, E22, and E33 command lines, Poisson’s ratios \(\nu_{12}\), \(\nu_{13}\), and \(\nu_{23}\) are given by the NU12, NU13, and NU23 command lines, and shear moduli \(G_{12}\), \(G_{13}\), and \(G_{23}\) are defined using command lines G12, G13, and G23.

  • Principal material direction specification requires a user specified coordinate system given by the COORDINATE SYSTEM command line, as detailed in the Sierra/SM User Manual. The material orientation may then be specified using one of the following approaches:

    • Three spatially varying, ordered Euler angle functions are given in terms of global coordinates (X, Y, Z = 1, 2, 3) for rotations about a corresponding local axis:

      • The rotation angle function abscissas \(x_1\), \(x_2\), and \(x_3\), corresponding to the global system (X, Y, Z) = (1, 2, 3), are defined with the ANGLE_1_ABSCISSA, ANGLE_2_ABSCISSA, and ANGLE_3_ABSCISSA command lines, respectively.

      • The axes of rotation \(i\), \(j\), and \(k\) are defined with the ROTATION_AXIS_1, ROTATION_AXIS_2, and ROTATION_AXIS_3 command lines, respectively.

      • The rotation angle functions \(\theta_{i}(x_{1})\), \(\theta_{j}(x_{2})\), and \(\theta_{k}(x_{3})\) are defined with the ANGLE_1_FUNCTION, ANGLE_2_FUNCTION, and ANGLE_3_FUNCTION command lines, respectively. Angles are specified in degrees. The Sierra/SM User Manual provides additional details about defining functions.

      The rotation axis and angle are applied successively in order (1, 2, 3), or (X, Y, Z); that is, each sequential Euler angle rotation defines a new coordinate system in which the subsequent rotation axis and angle are defined.

    • Alternatively, the angles and axes may be defined directly at each element integration point using INITIAL CONDITION command blocks, as described in the Sierra/SM User Manual. Angles may be specified in degrees using the variables ANGLE_1, ANGLE_2, and ANGLE_3, while axes are given by AXIS_1, AXIS_2, and AXIS_3.

    • A final option is to initialize the rotation tensor to correspond to the local coordinate system defined in the COORDINATE SYSTEM command line.

    The resulting material directions may be visualized by requesting the element fields MATERIAL_DIRECTION_1, MATERIAL_DIRECTION_2, and MATERIAL_DIRECTION_3 in the results output block.

  • Functions to describe normal thermal engineering strains along the principal material directions are given by the THERMAL_STRAIN_11_FUNCTION, THERMAL_STRAIN_22_FUNCTION, and THERMAL_STRAIN_33_FUNCTION command lines. See the Sierra/SM User Manual for guidance on defining functions.

Warning

The ELASTIC_ORTHOTROPIC model has not been tested in conjunction with the control stiffness implicit solver block.

Output variables available for this model are listed in Table 16.1.

Table 16.1 State Variables for ELASTIC ORTHOTROPIC Model

Index

Name

Description

1

Q_XX

X component of the material 11 unit vector

2

Q_YY

Y component of the material 22 unit vector

3

Q_ZZ

Z component of the material 33 unit vector

4

Q_XY

Y component of the material 11 unit vector

5

Q_YZ

Z component of the material 22 unit vector

6

Q_ZX

X component of the material 33 unit vector

7

Q_YX

X component of the material 22 unit vector

8

Q_ZY

Y component of the material 33 unit vector

9

Q_XZ

Z component of the material 11 unit vector

10

ANGLE_1

Rotation angle about axis 1 (degrees)

11

ANGLE_2

Rotation angle about axis 2 (degrees)

12

ANGLE_3

Rotation angle about axis 3 (degrees)

13

AXIS_1

First axis of rotation

14

AXIS_2

Second axis of rotation

15

AXIS_3

Third axis of rotation

16

TH_STR_XX

Thermal stretch ratio in material 11 direction

17

TH_STR_YY

Thermal stretch ratio in material 22 direction

18

TH_STR_ZZ

Thermal stretch ratio in material 33 direction

19

MAT_STRAIN_XX

Green Lagrange strain in material 11 direction

20

MAT_STRAIN_YY

Green Lagrange strain in material 22 direction

21

MAT_STRAIN_ZZ

Green Lagrange strain in material 33 direction

22

MAT_STRAIN_XY

Green Lagrange strain in material 12 direction

23

MAT_STRAIN_YZ

Green Lagrange strain in material 23 direction

24

MAT_STRAIN_ZX

Green Lagrange strain in material 31 direction

25

MAT_STRESS_XX

2nd P-K stress in material 11 direction

26

MAT_STRESS_YY

2nd P-K stress in material 22 direction

27

MAT_STRESS_ZZ

2nd P-K stress in material 33 direction

28

MAT_STRESS_XY

2nd P-K stress in material 12 direction

29

MAT_STRESS_YZ

2nd P-K stress in material 23 direction

30

MAT_STRESS_ZX

2nd P-K stress in material 31 direction

31

MAT_LOG_STRAIN_XX

Log (Hencky) strain in material 11 direction

32

MAT_LOG_STRAIN_YY

Log (Hencky) strain in material 22 direction

33

MAT_LOG_STRAIN_ZZ

Log (Hencky) strain in material 33 direction

34

MAT_LOG_STRAIN_XY

Log (Hencky) strain in material 12 direction

35

MAT_LOG_STRAIN_YZ

Log (Hencky) strain in material 23 direction

36

MAT_LOG_STRAIN_ZX

Log (Hencky) strain in material 31 direction

37

MAT_CAUCHY_STRESS_XX

Cauchy stress in material 11 direction

38

MAT_CAUCHY_STRESS_YY

Cauchy stress in material 22 direction

39

MAT_CAUCHY_STRESS_ZZ

Cauchy stress in material 33 direction

40

MAT_CAUCHY_STRESS_XY

Cauchy stress in material 12 direction

41

MAT_CAUCHY_STRESS_YZ

Cauchy stress in material 23 direction

42

MAT_CAUCHY_STRESS_ZX

Cauchy stress in material 31 direction