16.20. NLVE 3D Orthotropic Model

BEGIN PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC
  #
  # Elastic constants
  #
  YOUNGS MODULUS = <real>
  POISSONS RATIO = <real>
  SHEAR MODULUS  = <real>
  BULK MODULUS   = <real>
  LAMBDA         = <real>
  TWO MU         = <real>
  #
  # Material coordinates system definition
  #
  COORDINATE SYSTEM             = <string> coordinate_system_name
  DIRECTION FOR ROTATION        = <real> 1|2|3
  ALPHA                         = <real> (degrees)
  SECOND DIRECTION FOR ROTATION = <real> 1|2|3
  SECOND ALPHA                  = <real> (degrees)
  #
  #
  #
  FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name
  FICTITIOUS LOGA SCALE FACTOR = <real>fict_loga_scale_factor
  #
  # In each of the five "PRONY" command lines and in
  # the RELAX TIME command line, the value of i can be from
  # 1 through 30
  #
  1PSI PRONY <integer>i = <real>psi1_i
  2PSI PRONY <integer>i = <real>psi2_i
  3PSI PRONY <integer>i = <real>psi3_i
  4PSI PRONY <integer>i = <real>psi4_i
  5PSI PRONY <integer>i = <real>psi5_i
  RELAX TIME <integer>i = <real>tau_i
  REFERENCE TEMP = <real>tref
  REFERENCE DENSITY = <real>rhoref
  WLF C1 = <real>wlf_c1
  WLF C2 = <real>wlf_c2
  B SHIFT CONSTANT = <real>b_shift
  SHIFT REF VALUE = <real>shift_ref
  WWBETA 1PSI = <real>wwb_1psi
  WWTAU 1PSI = <real>wwt_1psi
  WWBETA 2PSI = <real>wwb_2psi
  WWTAU 2PSI = <real>wwt_2psi
  WWBETA 3PSI = <real>wwb_3psi
  WWTAU 3PSI = <real>wwt_3psi
  WWBETA 4PSI = <real>wwb_4psi
  WWTAU 4PSI = <real>wwt_4psi
  WWBETA 5PSI = <real>wwb_5psi
  WWTAU 5PSI = <real>wwt_5psi
  DOUBLE INTEG FACTOR = <real>dble_int_fac
  REF RUBBERY HCAPACITY = <real>hcapr
  REF GLASSY HCAPACITY = <real>hcapg
  GLASS TRANSITION TEM = <real>tg
  REF GLASSY C11 = <real>c11g
  REF RUBBERY C11 = <real>c11r
  REF GLASSY C22 = <real>c22g
  REF RUBBERY C22 = <real>c22r
  REF GLASSY C33 = <real>c33g
  REF RUBBERY C33 = <real>c33r
  REF GLASSY C12 = <real>c12g
  REF RUBBERY C12 = <real>c12r
  REF GLASSY C13 = <real>c13g
  REF RUBBERY C13 = <real>c13r
  REF GLASSY C23 = <real>c23g
  REF RUBBERY C23 = <real>c23r
  REF GLASSY C44 = <real>c44g
  REF RUBBERY C44 = <real>c44r
  REF GLASSY C55 = <real>c55g
  REF RUBBERY C55 = <real>c55r
  REF GLASSY C66 = <real>c66g
  REF RUBBERY C66 = <real>c66r
  REF GLASSY CTE1 = <real>cte1g
  REF RUBBERY CTE1 = <real>cte1r
  REF GLASSY CTE2 = <real>cte2g
  REF RUBBERY CTE2 = <real>cte2r
  REF GLASSY CTE3 = <real>cte3g
  REF RUBBERY CTE3 = <real>cte3r
  LINEAR VISCO TEST = <real>lvt
  T DERIV GLASSY C11 = <real>dc11gdT
  T DERIV RUBBERY C11 = <real>dc11rdT
  T DERIV GLASSY C22 = <real>dc22gdT
  T DERIV RUBBERY C22 = <real>dc22rdT
  T DERIV GLASSY C33 = <real>dc33gdT
  T DERIV RUBBERY C33 = <real>dc33rdT
  T DERIV GLASSY C12 = <real>dc12gdT
  T DERIV RUBBERY C12 = <real>dc12rdT
  T DERIV GLASSY C13 = <real>dc13gdT
  T DERIV RUBBERY C13 = <real>dc13rdT
  T DERIV GLASSY C23 = <real>dc23gdT
  T DERIV RUBBERY C23 = <real>dc23rdT
  T DERIV GLASSY C44 = <real>dc44gdT
  T DERIV RUBBERY C44 = <real>dc44rdT
  T DERIV GLASSY C55 = <real>dc55gdT
  T DERIV RUBBERY C55 = <real>dc55rdT
  T DERIV GLASSY C66 = <real>dc66gdT
  T DERIV RUBBERY C66 = <real>dc66rdT
  T DERIV GLASSY CTE1 = <real>dcte1gdT
  T DERIV RUBBERY CTE1 = <real>dcte1rdT
  T DERIV GLASSY CTE2 = <real>dcte2gdT
  T DERIV RUBBERY CTE2 = <real>dcte2rdT
  T DERIV GLASSY CTE3 = <real>dcte3gdT
  T DERIV RUBBERY CTE3 = <real>dcte3rdT
  T DERIV GLASSY HCAPACITY = <real>dhcapgdT
  T DERIV RUBBERY HCAPACITY = <real>dhcaprdT
  REF PSIC = <real>psic_ref
  T DERIV PSIC = <real>dpsicdT
  T 2DERIV PSIC = <real>d2psicdT2
  PSI EQ 2T = <real>psitt
  PSI EQ 3T = <real>psittt
  PSI EQ 4T = <real>psitttt
  PSI EQ XX 11 = <real>psiXX11
  PSI EQ XX 22 = <real>psiXX22
  PSI EQ XX 33 = <real>psiXX33
  PSI EQ XX 12 = <real>psiXX12
  PSI EQ XX 13 = <real>psiXX13
  PSI EQ XX 23 = <real>psiXX23
  PSI EQ XX 44 = <real>psiXX44
  PSI EQ XX 55 = <real>psiXX55
  PSI EQ XX 66 = <real>psiXX66
  PSI EQ XXT 11 = <real>psiXXT11
  PSI EQ XXT 22 = <real>psiXXT22
  PSI EQ XXT 33 = <real>psiXXT33
  PSI EQ XXT 12 = <real>psiXXT12
  PSI EQ XXT 13 = <real>psiXXT13
  PSI EQ XXT 23 = <real>psiXXT23
  PSI EQ XXT 44 = <real>psiXXT44
  PSI EQ XXT 55 = <real>psiXXT55
  PSI EQ XXT 66 = <real>psiXXT66
  PSI EQ XT 1 = <real>psiXT1
  PSI EQ XT 2 = <real>psiXT2
  PSI EQ XT 3 = <real>psiXT3
  PSI EQ XTT 1 = <real>psiXTT1
  PSI EQ XTT 2 = <real>psiXTT2
  PSI EQ XTT 3 = <real>psiXTT3
  REF PSIA 11 = <real>psiA11
  REF PSIA 22 = <real>psiA22
  REF PSIA 33 = <real>psiA33
  REF PSIA 12 = <real>psiA12
  REF PSIA 13 = <real>psiA13
  REF PSIA 23 = <real>psiA23
  REF PSIA 44 = <real>psiA44
  REF PSIA 55 = <real>psiA55
  REF PSIA 66 = <real>psiA66
  T DERIV PSIA 11 = <real>dpsiA11dT
  T DERIV PSIA 22 = <real>dpsiA22dT
  T DERIV PSIA 33 = <real>dpsiA33dT
  T DERIV PSIA 12 = <real>dpsiA12dT
  T DERIV PSIA 13 = <real>dpsiA13dT
  T DERIV PSIA 23 = <real>dpsiA23dT
  T DERIV PSIA 44 = <real>dpsiA44dT
  T DERIV PSIA 55 = <real>dpsiA55dT
  T DERIV PSIA 66 = <real>dpsiA66dT
  REF PSIB 1     = <real> psiB1
  REF PSIB 2     = <real> psiB2
  REF PSIB 3     = <real> psiB3
  T DERIV PSIB 1 = <real> dpsiB1dT
  T DERIV PSIB 2 = <real> dpsiB2dT
  T DERIV PSIB 3 = <real> dpsiB3dT
  PSI POT TT     = <real> psipotTT
  PSI POT TTT    = <real> psipotTTT
  PSI POT TTTT   = <real> psipotTTTT
  PSI POT XT 1   = <real> psipotXT1
  PSI POT XT 2   = <real> psipotXT2
  PSI POT XT 3   = <real> psipotXT3
  PSI POT XTT 1  = <real> psipotXTT1
  PSI POT XTT 2  = <real> psipotXTT2
  PSI POT XTT 3  = <real> psipotXTT3
  PSI POT XXT 11 = <real> psipotXXT11
  PSI POT XXT 22 = <real> psipotXXT22
  PSI POT XXT 33 = <real> psipotXXT33
  PSI POT XXT 12 = <real> psipotXXT12
  PSI POT XXT 13 = <real> psipotXXT13
  PSI POT XXT 23 = <real> psipotXXT23
  PSI POT XXT 44 = <real> psipotXXT44
  PSI POT XXT 55 = <real> psipotXXT55
  PSI POT XXT 66 = <real> psipotXXT66
END [PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC]

The NLVE three-dimensional orthotropic model is a nonlinear viscoelastic orthotropic continuum model that describes the behavior of fiber-reinforced polymer-matrix composites. In addition to being able to model the linear elastic and linear viscoelastic behaviors of such composites, it also can capture both “weak” and “strong” nonlinear viscoelastic effects such as stress dependence of the creep compliance and viscoelastic yielding. This model can be used in both Presto and Adagio.

Because the NLVE model is still under active development and also because it has an extensive list of command lines, we have not followed the typical approach in documenting this model.