
Distance-Avoiding Sequences for Extremely
Low-Bandwidth Authentication

Michael J. Collins and Scott Mitchell

Sandia National Laboratories?

Albuquerque, NM USA 87185
mjcolli@sandia.gov

Abstract. We develop a scheme for providing strong cryptographic au-
thentication on a stream of messages which consumes very little band-
width (as little as one bit per message) and is robust in the presence of
dropped messages. Such a scheme should be useful for extremely low-
power, low-bandwidth wireless sensor networks and “smart dust” appli-
cations. The tradeoffs among security, memory, bandwidth, and tolerance
for missing messages give rise to several new optimization problems. We
report on experimental results and derive bounds on the performance of
the scheme.

1 Introduction and Previous Work

We consider the following scenario: we wish to send a stream of many short mes-
sages m1,m2,m3, · · · on a channel with very limited bandwidth, and we need to
provide strong cryptographic authentication for this data. Because bandwidth is
so limited, we assume that we must use almost all transmitted bits for delivering
payload data: say we can append no more than r bits of authentication to each
message, where r is too small to provide adequate security. Such a situation might
arise for power-scavenging or energy harvesting systems, since communication is
generally energy-intensive relative to computation.

Suppose we have decided that qr authentication bits are needed for security; a
simple solution would be to send q consecutive messages m1,m2, · · ·mq, followed
by a message authentication tag t of length qr for the concatenated message
(m1|m2| · · ·mq) (repeating this process for the next block of q messages and
so on). This achieves the desired data rate, but it is unsatisfactory for several
reasons. In an extremely low-power environment (such as a wireless network of
very small sensors), we expect that many messages will be dropped or corrupted,
making it impossible for the receiver to verify the correctness of t. Also, we are
transmitting no data at all during the relatively long time needed to transmit the
tag. We seek a more robust solution which will tolerate some missing messages
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(without the additional cost of applying an erasure code to already-redundant
data), and which does not interrupt the flow of payload data.

Perrig et al. [4, 5, 2] have considered the problem of efficient authentication
for lossy data streams, but our work considers a somewhat different set of issues.
Protocols such as µTESLA [5] have low overhead compared to earlier authen-
tication methods for such streams, but “low overhead” in their context means
tens of bytes; our work considers a scenario in which we may add only a few
bits to each message. In order to attain such extreme bandwidth efficiency, it
is necessary to constrain the problem somewhat. The µTESLA protocol specifi-
cally addresses the problem of broadcast in sensor networks, but our work is only
applicable to point-to-point communication, because we assume that the sender
and receiver share a symmetric key.

2 Subset Authentication

Our basic approach is to append a short authentication tag ai to each message
mi; each ai is an r-bit authentication tag for some appropriately-chosen subset
Si of the previous messages. Let AK be a message authentication code (MAC)
with key K that produces an r-bit output. Thus if Si = {ji

1 < ji
2 < · · · ji

k} we
have1

ai = AK(i|mji
1
| · · · |mji

k
) (1)

and we transmit m1, a1,m2, a2, · · · . If each message is contained in q sets, then
each message is used in the computation of q different tags, and we will eventually
accumulate the required qr bits of authentication for each message. If AK is a
pseudorandom function, an adversary cannot cause an invalid mi to be accepted
without guessing qr random bits. In practice, AK could be implemented by
truncating the output of a full-length authentication code such as HMAC with
SHA-1 [1]. The design of an equally secure but less computationally intensive
MAC which inherently produces a short output would pose an interesting and
challenging problem.

It is essential to include the sequence number i in the computation of ai,
so that an attacker cannot replay the same data with different authentication
bits and attack each r bit tag separately. We are here making a non-standard
security assumption; an attacker only has access to a stateful verification oracle.
Once this oracle has answered one query for a message with sequence number
i, it will not answer queries (or will always answer “no”) for any message with
sequence number ≤ i. This is a plausible assumption in many cases, especially
for data with a short lifetime, which is likely to be the case in our intended
applications. Some non-standard assumption of this type is necessary to achieve
our very strong efficiency requirements.

Given that bandwidth is very constrained, we would seek to avoid explicitly
transmitting the entire sequence number with each message. In particular, if

1 It is convenient to ignore the distinction between a message and its index, writing
j ∈ Si instead of mj ∈ Si.



messages are guaranteed to be received in order (i.e. if there is a direct radio
link from sender to receiver), and if we assume that no more than 2k consecutive
messages will ever be lost, then it is only necessary to transmit the k low-order
bits of i.

Of course it is not enough to simply require that each message appear q
times. We are assuming a very low-power network with no acknowledgement or
retransmission protocol, no error-correction mechanism, and occasional loss of
connectivity. Thus we must expect that some messages will be lost, and if mj is
lost, all tags ai such that j ∈ Si will be useless. Therefore every message must
be contained in more than q sets, to provide robustness against the expected
missing messages. The question then becomes, what conditions must we impose
on the sets Si, and what is the optimal way to achieve those conditions?

We first consider the following requirement (more general requirements are
considered in section 4): if any one message is lost, this must not prevent full
authentication of any other message. This means that for any pair of messages
mi,mj , we must have at least q sets which contain mi but not mj . Thus if mj is
lost, we still have enough good tags to authenticate mi with the desired degree
of security.

This “set-cover” approach requires the sender to remember many old mes-
sages. If a node can remember at most v old messages, then we must have
Si ⊂ [i− v, i] for all i. Memory is presumably quite limited since we are dealing
with very low-power nodes. Note that v is also the maximum delay before a
message finally achieves full authentication, which is another reason to limit v.

Thus we have the following problem: Given memory bound v, find sets Si

that maximize q where

– For each i ∈ N, Si ⊂ [i− v, i]
– For each i 6= j there are at least q sets S with i ∈ S, j 6∈ S

Given a collection of sets S, define the strength of the collection as

Definition 1.
µ(S) = min

i,j
#{t|i ∈ St, j 6∈ St}

(here #A denotes the size of a set A). We have defined S as an infinite collection;
such a collection would of course be specified either by rotating through a finite
collection of given sets, or more generally by specifying a way to generate Si

as a function of i. To get the process started, we can implicitly have dummy
messages m−v, · · ·m−1,m0 = 0.

3 Sliding-Window Construction

We first consider the special case in which each set Si is defined by a “sliding
window”; we select a set of distances δ = {δ1 < · · · δk ≤ v} and let each Si =
{i− δ1, · · · i− δk}. Without loss of generality we can assume δ1 = 0 and δk = v.



It will be convenient to identify the vector of distances d with a binary
sequence b of length v which is zero except on δ. Then

Si = {i− d : bd = 1}.

We may also treat b as an infinite sequence with bj = 0 for j outside of the
interval [0, v− 1]. We say that difference d is “realized (at j)” if bj = 1, bj+d = 0
and call the ordered pair (j, j + d) a “realization of d”. We define

Definition 2.
µb(d) = #{i|bi = 1, bi+d = 0} (2)

so µb(d) is the number of times d is realized in b (we may drop the subscript b
when the context is clear). We then define the strength of the vector b as

µ(b) = min
d

µb(d) (3)

consistent with the definition given above for µ(S). Then b is a t-distance avoiding
sequence if µ(b) ≥ t.

We can assume with no loss of generality that b0 = bv−1 = 1. Changing
b0 from zero to one does not destroy any realizations of any d; changing bv−1

from zero to one creates one new realization of d for every d, while destroying
one realization of each d with bv−d−1 = 1. Thus µ(b) might increase and cannot
decrease.

Note that we do not need to consider differences with absolute value greater
than v; for such differences we clearly have µd =

∑
i bi, which is a trivial upper

bound on all µd. In fact we can limit our attention to positive differences:

Lemma 1. For all d, µd = µ−d

Proof: µd − µ−d =
∑

i(bi − bi+d) = 0

We can bound the maximum strength of a sequence for a given memory size
v as follows:

Theorem 1. For all b of length v,

µ(b) ≤ v + 2
3

(4)

Proof: We in fact prove the stronger result that

min(µ1, µ2) ≤
v + 2

3
(5)

Let Rs
` be the number of runs of s ∈ {0, 1} of length `. With no loss of generality

we may assume that ` ≤ 2; in a long run of ones or zeros, the third value can be
changed without decreasing µ1 or µ2. Then we have

v = R0
1 + R1

1 + 2R0
2 + 2R1

2 (6)



Runs of zeros and ones alternate, and we can assume with no loss of generality
that the sequence starts and ends with 1, so we also have

R1
1 + R1

2 = 1 + R0
1 + R0

2 (7)

and combining these we obtain

v = 2(R1
1 + R1

2) + R0
2 + R1

2 − 1 (8)

Now µ1 = R1
1 + R1

2 since this is the number of runs of ones. Furthermore, the
distance 2 will fail to be realized at bi = 1 if and only if this is immediately
followed by a zero-run of length one; thus (using equation 7)

µ2 = R1
1 + 2R1

2 −R0
1 = 1 + R0

2 + R1
2 (9)

therefore
v = 2µ1 + µ2 − 2 (10)

and the theorem follows.
In fact, the same bound applies to any collection of sets, without the sliding-

window assumption:

Theorem 2. For any collection of sets S with memory bound v,

µ(S) ≤ v + 2
3

(11)

Proof: Let bi be the binary sequence corresponding to the set Si, i.e. bi
t = 1 if

and only if i − t ∈ Si. Consider v consecutive sets Si, · · ·Si+v−1. These are the
only sets which can contain i; thus for any distance d, at least µ(S) of these sets
contain i but not i+d. Thus the sequences bi · · · bi+v−1 together contain at least
µ(S) realizations of d, where in sequence bi+t we only count a realization at bit
position t.

Similarly, the sequences bi+1 · · · bi+v contain at least µ(S) different realiza-
tions of d and so, for any L, the v + L− 1 sequences bi · · · bi+v+L−2 contain qL
different realizations of d. Thus as L approaches infinity, the average value of
µbj (d) for i ≤ j ≤ i + v + L − 2 approaches (at least) µ(S). In particular this
holds for d = 1, 2. Now from the proof of theorem 1, we know that

2µbj (1) + µbj (2) ≤ v + 2

for each sequence bj , thus the same must be true of the averages, i.e.

3µ(S) ≤ v + 2

It is not known whether the strength of an arbitrary collection of sets can
exceed the maximum strength achievable by a sliding window. The proof of
theorem 2 shows that if this is the case, we must have a collection of sliding
windows in which the average value of each µd exceeds the maximum strength
of any single sliding window.

We also have the following relationship among different distances:



Theorem 3. For all d, d′

µd + µd′ ≥ µd+d′ (12)

In particular,
2µd ≥ µ2d

Proof: If d 6= d′ define a mapping from realizations of d + d′ to realizations of d
and d′ as follows: for each bi > bi+d+d′ , map (i, i+d+d′) to (i, i+d) if bi+d = 0,
else map to (i + d, i + d + d′). Clearly this map is injective.

If d = d′ then similarly every realization of 2d can be mapped to exactly one
realization of d, and no more than two realizations of 2d can map to the same
point.

3.1 Lower Bounds for the Sliding Window Construction

To obtain lower bounds, we recall the following well-known [3] concept:

Definition 3. A (v, k, λ)-cyclic difference set is a subset D ⊂ Zv such that
#D = k and, for each d ∈ Zv\{0}, there are exactly λ pairs a, b ∈ D with
a− b = d

If such a set exists we must have λ(v − 1) = k(k − 1). In particular, if k = v−1
2 ,

then for each d 6= 0 there are exactly k−1
2 pairs x, y ∈ D with x− y = d mod v;

thus there are exactly k+1
2 pairs x ∈ D, y 6∈ D with x− y = d mod v. So if b is

a binary sequence of length v with bi = 1 precisely when i ∈ D, we have

µ(b) ≥ k + 1
2

=
v + 1

4
(13)

We can have strict inequality in (13), because we may have y = x− d < 0 when
the indices are not taken modulo v, giving a realization of d even though y ∈ D.

A translate of D is a set D + t = {a + t|a ∈ D}. Clearly any translate of a
difference set is another difference set with the same parameters, but different
translates can give different values of µ(b). However, we have µ(b) ≤ 1 + v+1

4
because µ1 ≤ 1 + v+1

4 ; the only way to get a non-cyclic realization of d = 1 is at
b0 = 1 when bv−1 = 1. Experimentation suggests the following

Conjecture 1. for every difference set of size v, there exists a translate with
µ(b) = 1 + v+1

4 .

Going in the other direction, a difference set always gives us a sequence b
attaining µ(b) = q with length strictly less than 4q − 1; taking a translate with
bv−t = bv−t+1 = · · · = bv−1 = 0 lets us truncate b to length v − t = 4q − 1− t.

Cyclic difference sets do not take advantage of the edge effects inherent in this
problem, and they do not necessarily provide optimal solutions. It appears to be
possible to do somewhat better than v+1

4 for all v (see section 3.3), although it
also seems that the maximum µ(b)/v approaches 1

4 as v approaches infinity.



3.2 Optimal Sequences for Small Memory Bounds

For small values of v, optimal sequences can be found by exhaustive search;
results are summarized in table 1. Only “critical” values are shown, i.e. v at
which the maximum µ(b) changes. These results show that the bound of theorem
1 can be attained for small v. For all lengths except v = 35, the table gives the
lexicographically smallest vector attaining max µ(b). Exhaustive search was not
completed for v = 35, but µ(b) = 11 is still known to be optimal; if we had b of
length 35 attaining µ(b) = 12, we could remove one bit to obtain µ(b) = 11 at
length 34, which has been ruled out by exhaustive search.

Note that most of these optimal values cannot be attained by the difference-
set constructions of section 3.1. For example, a difference set of size 31 would give
µ(b) ≤ 9. Furthermore, a sequence attaining µ(b) = 10 with v = 31 could not
be obtained by truncating a block of consecutive zeros from a larger difference
set; the larger difference set would have v+1

4 = 10 thus v = 39, but no cyclic
difference set of that size exists.

As a secondary objective, we could seek to minimize the Hamming weight
of b: this weight is the number of messages that must be combined to compute
each authentication tag, so reducing this weight may reduce the amount of work
needed to compute ai. For all v in this table (except 21 and possibly 35) ex-
haustive search confirms that there are no optimal vectors with weight less than
v
2 .

v max µ(b) an optimal vector

4 2 1 1 0 1
7 3 1 1 0 0 1 0 1
10 4 1 1 0 1 0 1 0 0 1 1
14 5 1 1 1 0 0 1 0 1 0 1 1 0 0 1
17 6 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1
21 7 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1
24 8 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1
27 9 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1
31 10 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1
35 11 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1

Table 1. Optimal windows for small v

3.3 Iterative Improvement of Windows

Starting with a random binary vector b0, we can attempt to maximize q by
iterative local improvement. At each step, we change one bit of the current
solution bi. If we can attain µ(bi+1) > µ(bi) by flipping a single bit, we do this
(note that a single bit change cannot increase the strength of the vector by
more than 1, since it cannot change any µd by more than 1). If such immediate



improvement is not possible, we consider the set of distances d which are tight,
i.e. which have µd = µ(bi). The local optimization criteria is to reduce the size
of this set as much as possible, subject to the condition that strength does not
decrease (i.e. that there is no d for which µd decreases to µ(bi) − 1). If local
improvement is impossible, we flip two bits at random.

In order to implement this search, note that it is not necessary to recompute
q from scratch for every vector at Hamming distance 1 from bi. Instead, for each
bit position i and for each tight distance d, we can compute in constant time
the effect on µd of flipping bit i. Table 2 gives the strengths of the best vectors
found in this manner.

v max known µ(b) Min weight attaining max µ(b)

40 12 19
60 18 30
100 28 48
200 55 100
300 81 150

Table 2. Best known µ(b) for large v

4 More General Independence Conditions

More generally we may consider conditions of the following form: for parameters
(r, r′), require that loss of any r messages does not prevent authentication of
more than r′ remaining messages. The problem considered above is the special
case r = 1, r′ = 0. In the general case we have the following: for any set A with
#A = r, there can be no more than r′ indices i 6∈ A such that

#{j|i ∈ Sj , A ∩ Sj = ∅} < q

This is a difficult condition to deal with in general, so we still consider some
special cases, and still consider only the sliding-window approach. If we have
r = 1 but r′ > 0, then we no are no longer maximizing the minimum value of
µd; instead we seek to maximize the (r′ + 1)th smallest value. The r′ smallest
values correspond to the r′ messages for which we are allowed to loose full
authentication.

If we have r > 1 and r′ = 0, then we require that the loss of any set of r
messages does not prevent authentication of any other message. For this case we
define µ(d1,d2,···dr) as the number of indices j where bj = 1, bj+d1 = · · · = bj+dr =
0, and maximize qr(b) = minµd over all vectors d, where we may assume i < j
implies di < dj since order does not matter. Note that the di may be negative.
Trivialy we have

qr(b) ≤
v + r

r + 1
(14)



since every realization of d = (1, 2, · · · r) (except at bv−1 = 1) consists of a 1
followed by r zeros, and these cannot overlap. Table 3 gives the best known
values of q2 for various memory bounds v; in general these can be attained while
simultaneously coming close to the best known q = q1.

v max known q2(b) Best q1(b) for this q2

10 2 3
20 4 6
30 5 9
40 7 12
60 10 16
100 16 26

Table 3. Best known q2(b) for some v
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