GEOTESS USERS MANUAL

Version 2.0
Sandy Ballard, Jim Hipp, Brian Kraus
Sandia National Laboratories

April 24, 2013

Table of Contents

BT 0] L0 000 4172 1L 2
INEFOAUCTION ..t 4
MoOde]l COMPONEILS ..coucirrarsmssmssssmsesssasssssssssasssssssssssssssssssssssssnsnssnnssss 5
Library INteractions ... ssssssss 9
100 00 L= 08010 010 = 0 9
Step 1 — SPECIfY MELtADALA ..t s s s s s sss s s sanes 9
Y= OB 00) o TSy m i Ut UL (o T (=) O PPN 10
Y= OB Ty U U7 v PPN 10

111 (010 1) U 11

107 (0 L= I8 0073 0 o= U) o 12
GIid INFOTMMATION courrteeiteeerenet et b s s s bbb 12
Accessing Data Stored in the MOAE] ... sssessssessesssssssssssseens 12
Interpolating Attribute Values at Arbitrary LOCAtiONScooeereenneeneenseesseseeseesseeeesseesessessseseessesssessenns 13
EXEENAING GO T ESS.ucuiuiiusesisismsmss s s s ssassss s s s e e R AR SRR RS 14
LT I T 241 U (= 14
GeoTessBuilder Properties File...... s sssssssssssssssssssssssssssssssnss 14
Model REfINEMENT MOGE ..o iuiereerectreiseesseee st sse s s s sess s s s s sses s s s s s ss e nees 15
Construction-From-SCratCh MOGE ... ssssss s ssssssss s ssssssssssssesas 15

PlOT FIlE PrOPEItIES. coveuieeeeeeeesreemeeseeseessesssessseessesssesss e sessse s sssesssess e ssse s s s e s s s e ss s sessssees 17
GeoTessBuilder EXamPIEs ... ssssssssssasssssssssssssssssssssssssssssssssssssssess 17
EXAIMPIE Tttt es s s s s SR R 17
EXAIMPIE 2..ooeeeeeeeerressreesseesseesseesesssesssees e sssees e s s s 8RR RS R R R R R 18
EXAIMPIE 3 oeeieeeeeeerrensreesseesseesseess s es e ss e s s s s s8R RS RR R S R E R RS 20
EXAIMNPLE 4ottt ettt e esse s s s AR AR R 21
GEOTESS EXPIOTET ..cviiersnsersmsessnssssnsssnsasssssssssassnssssnssssnssssnssssnssssnssssnssssnss 22
o0 70 1 25
Installation INSErUCHIONS ... ———————————— 27
T o 0 27
BUild ENVIFONIMENTES ..coviiieieieieiasssmsssssnsisssasasssssssssssssssassssssssssssssssssssssanas 28

UG T T L 29
MaKefile RESULILS ..o 29
MakKefile ProdUcCtion.. ... ssasassssssssssssssssssssssasassssssssssnssanas 30
Changing between 32 and 64 bit MOdes ... ——————————— 31

C and FORTRAN SRhellScoimnsssnss 32
L0 £ 1= | 32
HEAAET'S oottt s s s s AR AR s 32
NAMING CONVENTIONS .vuieueriereenressessessessessessessessessesssssesssssss s s sse s sse s s s s s s s bbb s e s nens 33

€ SNEIL SOUTCE ..ereeeereeeeeeeseeeetsetseseesses et ese et e s AR AR bbbt 33

Y 4T | 35

HEAAET'S ..ottt ets et b s e RS eER e EA R bR e 35
NAMING CONVEINTIONS .vureuiereereesresressesresressessessessessessessessesssssssssssssssssssssessessessessessessessessessesssssssssssssssssssssssssssessessessessens 36
FORTRAN SREIL SOUICE ...corrvreenieeesseersetseesseesseesssss e s s s sssess s ssssss s ssss s ssesssass s s sssasssasssnees 36
33 () 1 0L L 37
120 (B 0 gy 20 0D g 4 37
BINATY MOAE] FIlE ..ottt ettt s s 37
BiNary Profile ODJECLS ..o sssssss s ssssssssssssss s ssas 39
BiNary Data ODjJECES. .. ssssss s ssssssssssssss s ssssss s sssssssssssssssassssssssssssssssssssssssssssssas 40
BINATY GIIA FIIES couitrierieeieeeece ettt e s bbb bbb 40

72 YTl 0 L0) 1 - U 42
ASCI MOAE] FIlES...ouieeieeeeeereeseeseese sttt st s ssse s ss e bbb s bbb 42
ASCI PTOfIlE ODJECES .ovuieeeretseereieesreee sttt ssse s s s bbb bR st 44
ASCI DAtA ODJECLS.cuueuieureusrenretreesseieesseeseesse b s ss s ess s s e sse bR R s R R Rt 45

E Y00 € g o 3 1 1= PPN 45

Introduction

GeoTess is a model parameterization for multi-dimensional Earth models and an extensible
software system that implements the construction, population, storage and interrogation of data
stored in the model. GeoTess is not limited to any particular type of data; to GeoTess, the data are
just 1D arrays of values associated with each node in the grid.

Users can interact with GeoTess in several ways: Applications can access GeoTess as a library. In
this mode of interaction, applications can perform the following tasks:

o Read grids and models from, and write them to, files in ascii and binary formats.
e Query a model grid for information about the nodes, cells or tessellations.

e Associate data structures with the nodes of the geometry.

e Query the model for the data associated with a specified node.

e Modify the data associated with a node.

e Find arbitrary positions within the grid hierarchy (point searching).

e Retrieve the interpolation coefficients at arbitrary locations in space. GeoTess currently
implements linear and natural neighbor interpolation algorithms and may implement
additional methods in the future.

e Interpolate data values at arbitrary positions using the interpolation coefficients described
above.

e Given a sequence of points that defines a ray path through a model, retrieve the weights
(data kernels) associated with the grid nodes in the model that were influenced by the ray
path.

These functions are described more fully in the section Library Interactions below. Complete
interface documentation for every publically accessible function in the library is provided for each
language, in html format. To locate the documentation, visit the GeoTess website or search the
GeoTess directory tree for the directory for the desired computer language. Within that directory
will be a file called source_code_documentation.htlm that will lead to the desired information.

The GeoTess library is available in Java and C++ with C and FORTRAN interfaces to the C++ library.
Source code and make files are provided, and precompiled binaries are included for SunOS, Linux,
Mac OSX and Windows operating systems.

In addition to accessing GeoTess through its libraries, two applications are provided:
GeoTessExplorer implements extraction of data from a GeoTessModel as boreholes, maps, and 3D
blocks, as well as a few other utility-type functions. GeoTessBuilder implements the construction
of variable resolution 2D triangular tessellations. These applications are described more fully in
separate sections below.

Model Components

While many Earth models use regular latitude longitude grids to describe the geographic geometry
and topology, GeoTess uses a triangular tessellation. These two approaches are compared in
Figure 1. While software algorithms that use regular latitude longitude grids are much more
straightforward to develop, the grids suffer from severe unintended variability in cell areas, with
cell areas approaching zero near the poles. Software for triangular tessellations, on the other hand,
is somewhat more complicated to develop but results in grids with much more uniform cell size
and approximately 25% fewer vertices.

7
)

iy

//

7
[[[[Iill 4

R
S
S
\\

Cell Ar
1000 kr;e%

200
. 180
160
140

120

100
80

Cell Ar
1000 ka%

200
. 180

160

S5y

140
120

100
80

60

40
20
0

Figure 1 — Comparison of a regular latitude longitude grid and a uniform triangular tessellation. In both
grids the edge lengths are approximately 4°.

A GeoTess model is comprised of the following elements:

e Asetoflayers (Figure 2). Each layer spans the entire 2D geographic extent of the model.
The boundaries at the top and bottom of a layer may have topography. Within each layer,
model data values are continuous, both geographically and radially. Model data values may
be discontinuous across layer boundaries. Layers may have zero thickness at some or all
geographic locations. An important limitation of the parameterization used by GeoTess is
that layer boundaries may not fold back on themselves, i.e., any radial line emanating from
the center of the Earth must intersect each layer boundary exactly one time.

e Asetof multi-level tessellations (Figure 3). Each layer will be associated with one multi-
level tessellation but many layers may be associated with each multi-level tessellation, i.e.,
there is a many-to-one relationship between layers and multi-level tessellations. By
associating layers that are deep in the Earth with low resolution multi-level tessellations
and layers at shallower levels in the Earth with higher resolution multi-level tessellations,
the resolution of the model can be varied radially as necessary to achieve more appropriate
sampling.

Upper
Mantle

P Velocity
(km/sec)

. 14
13
12
[|
10

B
8

Figure 2 — A slice through a portion of a global 3D P velocity model. The model consists of a number of
layers, such as the Inner Core, Outer Core, etc. Each layer is associated with a separate multi-level
tessellation, providing variable resolution in the radial direction. Profiles are defined as a set of nodes, all
within a single layer of the model, positioned along a line with constant geographic position. Note the
variable resolution in the geographic dimensions in the upper mantle.

The topology of each multi-level tessellation will consist of a set of levels (see Figure 3),
with each level consisting of a set of triangles that spans the surface of a unit sphere,
without gaps or overlaps. The triangles on a given tessellation level are obtained by
subdivision of the triangles on the previous tessellation level, with the first tessellation level
being an icosahedron. Each multi-level tessellation may have variable resolution in the
geographic dimensions (i.e. the triangles can be subdivided into smaller triangles
arbitrarily). Note the variable resolution of the final tessellation level in the bottom right
panel.

e The geometry of each multi-level tessellation will consist of a set of vertices that defines the
positions of the corners of the triangles. If a model is comprised of more than one multi-
level tessellation, they will share common vertices, to the extent possible.

e Data arrays. Each data array is a 1D array of data values that may be of type double, float,
long, int, short or byte. All the data arrays in the model must be of the same type and must
have the same number of elements.

Figure 3 — Construction of a multi-level tessellation by iterative subdivision of triangles. Each image
represents one level and together the levels comprise a single multi-level tessellation.

o Profiles. Each profile is composed of a set of monotonically increasing radii and a set of data
arrays. Each profile is associated with a single vertex and a single layer in the model. The
first and last radii in a profile define the bottom and top of the associated layer at the
geographic position of the vertex. Several types of profiles are supported:

(e]

N-Point profiles consist of two or more radii and an equal number of data arrays,
with one data array associated with each radius.

Constant value profiles consist of two radii and a single data array that defines the
data values for the entire radial span of the profile.

Thin profiles consist of a single radius and a single data array. They have zero
thickness, i.e., the radius of the bottom and top of the profile are equal.

Empty profiles consist of two radii but no data arrays.

Surface profiles consist of only a single data array. They have no radius values.
Together with Empty Surface profiles, these are used to support 2D models. Surface
profiles are incompatible with all other profile types. If a model contains any
surface profiles, it cannot contain any profiles of any other type.

o Empty Surface profiles consist of no radii and no data.
The data values within a profile are continuous.

o A 2D array of Profiles with nVertices x nLayers elements. The first index refers to one of the
vertices of the model geometry and the second index refers to one of the layers of the
model. For a given vertex index, the 1D array of profiles contains a profile for each layer of
the model, stored in order of increasing radius. The last radius of each profileina 1D
profile array must be equal to the first radius of the next profile in the same 1D profile
array. While the data values within a single profile are continuous, data values may be
discontinuous across profile (i.e. layer) boundaries.

o Radial interpolators that interpolate data values within an individual profile. These include
linear interpolators, cubic spline interpolators, and potentially others.

¢ 2D interpolators that interpolate values in the 2 geographic dimensions. These include
linear interpolators that interpolate values within a single triangle of the 2D tessellations,
and higher order interpolators that provide continuous spatial derivatives of the data
values.

¢ (2+1)D interpolators that combine 1D and 2D interpolators to interpolate data in 3D. They
first use a 1D interpolator to interpolate values at a specified radius in a neighborhood of
profile arrays, and then apply a 2D interpolator to those values to find an interpolated value
at the desired 3D location.

Referencing Data objects is complicated by the fact that a particular Data object has a node index
within a Profile which in turn is associated with a vertex and a layer. The following definitions are
relevant:

o Vertex - refers to a point in a 2D triangular tessellation where multiple triangles intersect.
Each vertex is represented internally by a unit vector whose origin resides at the center of
the earth, x-component points to lat, lon = 0°N, 0°E, y-component points to lat, lon =
0°N, 90°E, and z component points to the north pole. A vertex has no information about
radial position in the model. Functions are provided in GeoTessUtils to convert back and
forth between unit vectors and geographic latitude and longitude.

e Node - refers to a Data object associated with a Profile. Nodes within a Profile are stored in
order of increasing radius. Every Profile has a node with index 0 which is the node with the
smallest radius.

e Point-To facilitate indexing the Data objects in a model, the term point is introduced. A
point is conceptually a triplet of indexes including the vertex index, the layer index and node
index. Applications can refer to Data objects in a model either by their pointIndex or by the
combination of vertexIndex, layerIndex and nodelndex. Each model maintains a PointMap
object to manage this capability.

Library Interactions

In this section, general information is provided about how to accomplish some of the most
important functions implemented by the GeoTess library. Not all functions are described here.
Complete interface documentation for every publically accessible function in the library is provided
for each language, in html format. To locate the documentation, visit the GeoTess website or search
the GeoTess directory tree for the directory for the desired computer language. Within that
directory will be a file called source_code_documentation.htlm that will lead to the desired
information. In addition to the documentation, there are example programs in each computer
language that illustrate how to implement basic functions.

Model population

Applications are going to want to generate a new GeoTessModel populated with their data.
Example code that performs this operation is provided for each supported language. There are
three major steps involved in this task:

Step 1 — Specify MetaData

Implement a GeoTessMetaData object and populate it with the following required general
information about the model:

1) Description - a description of the model. GeoTess does not process this information in any way;
it simply stores it in the model and returns it on request. Users can put whatever they want in
here.

2) Layer names - a list of the names of the layers that comprise the model, listed in order of
increasing radius. An example might be “core, mantle, crust”.

3) data type - the type of the data stored in the model. Options are double, float, long, int, short, or
byte. All the data stored in a model must be of the same type.

4) attribute names - a list of the names of the data attributes stored in the model. An example
might be “pvelocity; svelocity; density”. In the example, there would be a 3-element array of
data values associated with each grid node in the model.

5) attribute units - a list of the units of each attribute. If the attribute names were “pvelocity;
svelocity; density”, then the attribute units might be “km/sec; km/sec; g/cc”. If one of the
attributes is a unitless quantity, the corresponding attribute unit would be blank, e.g.,
“km/sec; ; g/cc”. The number of units must equal the number of attribute names.

6) model-population software - the name and version number of the application used to generate
the model. GeoTess does not process this information in any way; it simply stores it in the
model and returns it on request.

7) model generation date - GeoTess does not process this information in any way; it simply stores
it in the model and returns it on request.

8) LayerTesslds - a list of tessellation indexes, with one element for each layer of the model,
establishing a map from layer index to a tessellation index. Consider the model in Figure 2 as an

example. Ignoring the crust, the model has 5 layers (inner core, outer core, lower mantle,
transition zone and upper mantle). The deeper layers have many fewer profiles than the
shallower layers, imparting variable resolution in the radial dimension to the overall model. To
accomplish this, the GeoTessGrid manages 5 distinct multi-level tessellations, one for each
layer. The LayerTesslds in this case would be the 5-element array “0, 1, 2, 3, 4” specifying that
the first layer is associated with the first multi-level tessellation, etc. For a different model that
consisted of 3 layers where all the layers could reference a single multi-level tessellation,
LayerTesslds should be specified as “0, 0, 0”.

Step 2 — Construct a Model

Construct a GeoTessModel object, specifying the GeoTessMetaData object instantiated in step 1 and
the name of a file containing a GeoTessGrid object. Files containing standard GeoTessGrid objects
are available on the GeoTess website or custom GeoTessGrids can be constructed using the
GeoTessBuilder application described later in this document. For this discussion, it is assumed that
the desired GeoTessGrid exists in an accessible file.

After instantiating the GeoTessModel, the model will have instantiated a 2D array of Profile objects,
which are all null, meaning that the model contains no Data.

Step 3 — Add Data

Loop over every vertex and every layer of the model. Obtain a 1D array of radius values in km, and
a 2D array of model attribute values, which define the radial distribution of attribute values within
the layer at the position of the vertex. The source of this information is application dependent.
With this information, call one of the GeoTessModel.setProfile() methods, which will build the
appropriate type of Profile object and array of Data objects and populate the model. The most
general version of the GeoTessModel.setProfile method includes 4 arguments: vertexID, layerID, 1D
array of radii and 2D array of attribute values. The vertexID is required. If layerID is present, then it
will be assumed that the model being constructed is a 3D model and a Profile of type NPOINT,
CONSTANT, THIN or EMPTY will be constructed, depending on the number of radii and attribute
arrays that are provided. If the number of radii and number of attribute arrays are equal and
greater than or equal to two, then a Profile of type NPOINT will be constructed. If two radii and one
attribute array are provided then a Profile of type CONSTANT is created. If one radius and one
attribute array are provided, then a Profile of type THIN is created. If two radii and zero attribute
arrays are provided, then a Profile of type EMPTY is created. All other combinations result in an
exception being thrown.

If layerID is missing then it will be assumed that the model is a 2D model and a Profile of type
SURFACE or SURFACE_EMPTY will be constructed, depending on whether or not any attribute
values are provided. Note that Profiles of type SURFACE and SURFACE_EMPTY are incompatible
with the Profiles of all the other types. If these two categories of Profile are mixed in the same
model, an exception will be thrown when the user attempts to write the model to a file.

The GeoTessModel.setProfile() methods will override the supplied values when it is appropriate to
do so. This happens when the GeoTessGrid includes multiple multi-level tessellations and the
current vertex is not ‘connected’ to the grid in the current layer. In this case, setProfile() will
construct an EMPTY Profile, regardless of the radius and attribute values the application provided.

It is possible to create 2D or 3D models that do not span the full geographic extent of the Earth. For
each vertex, the user can check to see if the vertex is located within the boundaries of the model

10

and, if it is, specify radii and attribute values as described above. If the vertex is outside the
boundaries of the model, then do not specify any attribute values and the setProfile() method will
instantiate a Profile of type EMPTY or SURFACE_EMPTY. These profiles return NaN values
whenever attribute values are requested from them. There are a couple of ways to define the
geographic boundaries of a model. One could specify minimum and maximum latitudes and
longitudes and then determine whether or not each vertex resides inside or outside the latitude-
longitude ‘box’. GeoTessUtils provides methods to return the latitude and longitude of a vertex
requested from a GeoTessGrid object. A more flexible definition of a model boundary would be to
define a Polygon object. See the section of this manual that describes Polygon objects. Then
whether or not a given vertex is inside or outside the polygon can be determined by calling the
polygon.contains(unit_vector) method.

After Profiles have been specified for all layers of all vertices of the model, the model is complete
and ready for use.

Model 1/O

GeoTessModels and GeoTessGrids can be written to and read from files, either in ascii or binary
format. Complete format definitions are supplied in a separate section.

The simplest way to save a model to a file is to call the model.writeModel(string filename) method. If
the file name has the extension ‘ascii’, then the file is written in ascii format. Otherwise it is saved in
binary format. The model data and the grid are written to the same file. Similarly, to load a model
from a file, construct a new model by calling one of the model constructors that does not take the
‘relativeGridPath’ argument. This assumes that the data and grid are contained in the same file.

The model grid and the model data can either be stored together in the same file or they can be
stored in separate files. In many applications, a model will consist of a single data set and a single
grid, in which case it will make the most sense to store the data and grid together in the same file.

In other applications there might be numerous data sets that are all stored on the same grid. For
example, the data may consist of pre-computed travel time predictions for a single station-phase to
every point on the Earth discretized on to the vertices of a grid. There may be separate data sets for
each station in a large network of stations, all of which use the same grid of source positions. If the
application needs to be able to load only a subset of the data sets at any one time, it would be most
efficient for the grid to be stored separately from the data so the grid could be loaded once and
serve the needs of any data set that might be loaded.

GeoTess supports the ability to store the grid and data in separate files. To accomplish this, every
grid has stored within it a unique string that identifies that grid. Typically, this is an MD5 hash of
the contents of the grid (node positions, connectivity, etc.). When a model is stored without its grid,
it stores two pieces of information: the name of the file containing the grid, and the grid’s unique
gridID.

When an application wants to write a model to file, it supplies two parameters: the name of the file
to receive the model and the name of the file to receive the grid. If the supplied grid file name is the
single character **, then the grid is stored in the same file as the model, right after the model data.
If a separate file name is specified for the grid, then the model metadata and model data are written
to the model file along with the name of the grid file and the gridID. The grid file name stored in the
model file does not include any directory information; just the name of the file.

11

When an application wishes to read a model from file, it supplies two pieces of information: the
name of the model file and the relative path from the directory where the model is stored to the
directory that is to be searched for the associated grid file. If the model file contains the grid, then
the supplied grid directory name is ignored. If the model file does not contain the grid, then the full
path to the grid file is constructed from the name of the directory where the model is stored, the
relative path to the grid directory supplied by the application, and the grid file name stored in the
model file. After the grid is loaded from the separate file, the gridID in the grid file and the gridID in
the model file are compared and if they are not the same and exception is thrown.

Model interrogation

Once a GeoTessModel has been loaded into memory, applications will need to access information in
the model. This section gives a general overview of the types of model interrogation that can be
accomplished. For a complete definition of all available functionality please consult the online
documentation. The sample codes supplied with each supported languages provide simple
examples of the most common model interrogation functions.

Model interrogations functions fall into 3 general categories: information about the grid, the values
of data attributes stored at grid nodes, and interpolation of data attribute values at off-node
locations.

Grid Information

GeoTessGrid manages the geometry and topology of a model but has no information about any data
attached to the grid. It has some 45 functions that start with ‘get...” to retrieve information about
the vertices, triangles, tessellation levels and multi-level tessellations that comprise the grid. The
html documentation is the best source of information about these functions.

The most fundamental query made on a GeoTessGrid object is the getVertex(i) method, which
returns the unit vector which defines the location of the i’th vertex in the grid. GeoTessUtils
provides the capability to convert back and forth between a unit vector and geographic latitude and
longitude.

Accessing Data Stored in the Model
General information about a model can be retrieved from the GeoTessMetaData object accessible
from the model. Information that is available includes:

e The model description

e The names, units and indexes of the attributes

e The type of the data (double, float, long, int, short or byte)

e The names and indexes of the layers

e The names of the files from which the model and grid were loaded and the amount of time
required to load the model and grid.

e The name and version number of the software that generated the model and the date that
the model was generated.

e The map between layer and tessellation indexes.

12

GeoTessMetaData will allow most of this information to be modified also.

Actual data values stored on grid nodes can be retrieved/modified in one of two ways. The firstis
to make the request through the model’s PointMap (model.getPointMap().getValue(ptindex, alndex);
and model.getPointMap().setValue(ptindex, alndex, newValue); where ptindex is the index of one of
the points in the model and alndex is the index of the attribute). The second is to retrieve data is
through the model’s array of Profiles (model.getProfile[i][j].getValue(k, alndex); where i is the index
of a vertey, j is the index of a layer, k is the index of a node and alndex is the index of the attribute).
To modify values using Profiles, it is necessary to create a new Data object with the new value(s)
and replace the existing Data object in the Profile by calling profile.setData(index, data). The radii of
the nodes can similarly be accessed/modified through the model’s PointMap or through its array of
Profiles.

Interpolating Attribute Values at Arbitrary Locations

GeoTessPosition objects manage the interpolation of attribute values at off-grid locations.
Applications obtain a GeoTessPosition object by calling either model.getGeoTessPosition() or
GeoTessPosition.getGeoTessPosition(). These accessors take optional parameters that specify the
type of interpolation that the GeoTessPosition object should perform. Options are linear or natural
neighbor interpolation in the geographic dimensions and linear or cubic spline interpolation in the
radial dimension.

Once a GeoTessPosition object has been instantiated, users call one of the 4 set() methods to specify
the point in model space where the interpolation is to be performed. All 4 set() methods take a 3D
position in space, either as a latitude, longitude, depth or as a unit vector and radius. Two of the
set() methods take a layer id in addition to the spatial position. If the layer id is not supplied then
the set() method will determine which layer the supplied position is in and store that layer id. If the
layer id is supplied in the set() method, then the GeoTessPosition object will use that layer id,
regardless of which layer the supplied position is in. Itis important to note that the supplied
position does not need to be located in the layer that corresponds to the layered stored by the
GeoTessPosition object.

After one of the set() methods has been called, a request can be made to interpolate an attribute
value by calling getValue(atttributelndex). If the current position is located within the boundaries
of the current layer stored by the GeoTessPosition object, then the interpolated attribute value is
returned. If the current position is not within the current layer stored by the GeoTessPosition
object, the behavior is controlled by the parameter radiusOutOfRangeAllowed. If the parameter is
true (the default) then the interpolated value at the top or bottom of the layer is computed and
returned. If radiusOutOfRangeAllowed is false, getValue() will return NaN. A getter and a setter are
provided to retrieve or modify the value of radiusOutOfRangeAllowed.

It is also possible to change only the radius/depth of the current interpolation position, without
changing the geographic position. See methods setDepth() and setRadius().

A GeoTessPositon object can return many other values of interest relative to the position most
recently set, including the radii/depths of the top and bottom of the current or any other layer, the
radial and geographic interpolation coefficients for the current position, the index of the triangle in
which the current position is located, and more. See the online documentation for more
information about these methods.

13

Extending GeoTess

The Data structures attached to the nodes of a GeoTessModel may not always be able to capture all
of the information that an application may need to store. When this is the case, Java and C++
applications can extend GeoTessModel to store the additional information. Examples of Java and
C++ classes that do this are provided. The basic idea is that the derived class implements the data
structures and methods needed to fulfill its requirements, implements all the constructors of a
GeoTessModel and overrides several key protected GeoTessModel 10 methods. These 10 methods
first call the super class 10 method and then read /write their own data structures in either ascii or
binary format. See the examples for more information.

GeoTessBuilder

A number of GeoTessGrid files are delivered as part of the GeoTess delivery package. Each of these
grids is comprised of a single multi-level tessellation with uniform geographic resolution. Grids
with triangle edge lengths ranging from 64° down to %° are provided. If these grids do not meet
the needs of an application, custom grids can be constructed that may be comprised of multiple
multi-level tessellations in order to achieve variable resolution in the radial direction, and/or
variable resolution in the geographic dimensions. GeoTessBuilder is a java application that can
construct these grids.

GeoTessBuilder is a command line driven application that takes as its only argument the name of a
properties file that contains information needed to generate the GeoTessGrid. The following
section defines the properties that can be defined in the properties file. Sample properties files are
supplied with the software delivery.

GeoTessBuilder Properties File
The following considerations apply to property files:
e All property names are case sensitive but property values are not.

o Ifadefault value is defined for a property, then it is not necessary to specify that property in
the properties file.

e Ifaproperty value ends with the string ‘ \’ (i.e., a space or tab followed by a backslash
character) it is interpreted as a line continuation string. This allows long property values to
be split over several lines.

e Tessellation indexes are zero-based, i.e., the first tessellation has index 0 and the last
tessellation has index nTessellations-1.

o The term triangle edge length refers to the approximate length of a triangle’s edge measured
in degrees. Values should be a power of two, less than or equal to 64, i.e., 64,32, 16, 8, 4, 2,
1, ¥, Y4, ¥, etc. These values are approximate and assume that the initialSolid is an
icosahedron.

14

o Files specified in property values can be either ascii files or Google Earth kmz/kml files.
Ascii files contain points defined as either latitude-longitude or longitude-latitude pairs, in
degrees. Latitude-longitude order is the default, but if the file contains the line ‘lon-lat’, then
points are assumed to be in lon-lat order. Latitude and longitude values can be separated
by either a comma or white space. Kml/kmz files contain points, paths or polygons as
defined by Google Earth.

GeoTessBuilder operates in one of two distinct modes: model refinement and construction from
scratch. In model refinement mode an existing GeoTessModel is refined in the neighborhood of a
subset of the points in the model. The user supplies both the name of the file containing the
GeoTessModel, and other properties that define how the model is to be refined. The output is a new
GeoTessModel. In construction from scratch mode, a new GeoTessGrid is constructed using
specifications defined in below.

Model Refinement Mode

gridConstructionMode - if this property is equal to ‘model refinement’, then an existing model will
be refined in the neighborhood of a list of specified points. The following properties are relevant.

modelToRefine - The full path to the file containing the GeoTessModel that is to be refined.

outputModelFile - The name of the file to receive the new GeoTessModel that will be generated by
GeoTessBuilder.

threshold - The values of one of the attributes in the input model will be used to determine which
points in the model should be refined. Three substrings must be specified:

1. The name of the attribute to be used to constrain refinement.
2. A comparison operator. Must be one of <=, <, =, ==, > or >=
3. The threshold value.

For example, the string ‘HIT_COUNT > 100’ would result in model refinement being applied to all
points in the model where the value of the attribute HIT_COUNT is greater than 100.

Either this property or property ‘fileOfPointsToRefine’ must be defined, but not both.

fileOfPointsToRefine - The name of the file containing the indices of the points in the model that
are to be refined. Either this property or property ‘threshold’ must be defined, but not both.

Note that in model refinement mode, none of the properties defined in the next section are accessed
by the code.

Construction-From-Scratch Mode

In construction-from-scratch model, points, paths and polygons can be specified that define where
grid refinement takes place in the geographic dimensions. Points, paths and polygons are not
mutually exclusive. Refinement of the same tessellation using any or all of the methods, in any
combination, is allowed. Also, multiple multi-level tessellations may be defined in the properties
file and each may be refined independently from the others.

15

gridConstructionMode - if this property is equal to ‘scratch’, then GeoTessBuilder will construct a
new GeoTessGrid from scratch using properties defined in this section.

outputGridFile - the name of the file to receive the new GeoTessGrid.

initialSolid - this property specifies the initial solid that defines the first level of each of the multi-
level tessellations that will be included in the new grid. The options are: icosahedron (default),
tetrahexahedron, octahedron, and tetrahedron. Any other value will cause an exception.

nTessellations — The number of multi-level tessellations to be included in the grid. The defaultis 1.

baseEdgeLengths - the minimum triangle edge length of the triangles in the top level of each
tessellation. The number of values must be equal to nTessellations. If no points, paths or polygons
are specified as described shortly, then uniform tessellations with this geographic resolution will be
constructed. If points, paths and/or polygons are specified, this property specifies the triangle size
far from any of the points, paths or polygons.

points - specification of a list of geographic locations about which refinement is to take place. The
supplied value is parsed as follows: First, the property value is split into substrings based on the
semicolon character (‘;’). Each of these substrings defines a single point about which refinement is
to occur. Each substring is split on the comma character (‘,") into a number of tokens.

o Ifthe resulting array of strings contains 3 tokens, they are interpreted to be (1) a file name,
(2) a tessellation index, and (3) a triangle edge length. Points are read from the specified file
and the multi-level tessellation with the specified index will be refined around all the points
to the specified triangle edge length.

o Ifthe resulting array of tokens contains 5 elements, they are interpreted as follows:

1. Either ‘lat-lon’ or ‘lon-lat’ defining the order of latitude and longitude in entries 4 and 5
below.

2. The index of the multi-level tessellation to refine.

3. The triangle edge length specifying how small the refined triangles around the point
should be.

4. Latitude or longitude of the point in degrees.
5. Latitude or longitude of the point degrees.

paths - specification of lists of points that define paths. All triangles that contain any segment of
the specified paths will be refined to the specified level. The property value is parsed as follows:
First, the property value is split into substrings based on the semicolon character (‘;’). Each
substring includes the specification of a single path. Each substring is split on the comma character
(). The resulting array of tokens must contain 3 tokens, which are interpreted to be (1) a file
name, (2) a tessellation index, and (3) a triangle edge length. Points are read from the specified file
and the multi-level tessellation with the specified index will be refined around all the paths to the
specified triangle edge length.

16

polygons - specification of one or more polygons. All triangles that have at least one corner inside
one of the polygons will be refined. The property value is parsed as follows: First, the property
value is split into substrings based on the semicolon character (;"). Each substring is the
specification of a single polygon. Each substring is split on the comma character (‘,"). The resulting
tokens are interpreted as follows:

o Ifthe first token is equal to ‘spherical_cap’, then the remaining tokens are interpreted as:
o latitude of the center of the spherical cap
longitude of the center of the spherical cap
radius of the spherical cap in degrees
tessellation index
triangle edge length specifying the size of the triangles desired within the spherical
cap.

(@)
O
O
O

e Otherwise the tokens are interpreted as follows:

o The name of a file containing the definition of a polygon. Files can be in either ascii
or Google Earth kmz/kml format. Polygon file formats are defined in a separate
section of this document.

o tessellation index

o triangle edge length specifying the size of the triangles desired within the polygon.

Plot File Properties

In both model refinement mode and construction from scratch mode, the following optional
properties can be specified in order to generate plot files that can be loaded into other programs to
visualize the new GeoTessGrids generated by GeoTessBuilder.

vtkFile - the name of the file(s) to receive the newly refined GeoTessGrid in vtk format. These files
can be opened with paraview, which is free software for visualization of 3D objects
(http://www.paraview.org). A separate file will be generated for each multi-level tessellation of the
model. The filename must end with the extension “vtk”.

kmlFile or kmzFile - the name of the file(s) to receive the newly refined GeoTessGrid in kml or kmz
format. These files can be opened with Google Earth, (http://www.google.com/earth). A separate
file will be generated for each multi-level tessellation of the model. The filename must end with the
extension “kml” or “kmz” (kmz is recommended).

gmtFile - the name of the file(s) to receive the newly refined GeoTessGrid in a GMT-compatible
ascii format. Each triangle edge in the top level of a multi-level tessellation is output on a separate
record in lat1, lon1, lat2, lon2 format. A separate file will be generated for each multi-level
tessellation of the model.

GeoTessBuilder Examples

Example 1

The first example of building a grid will construct a single GeoTessGrid object that is comprised of
three multi-level tessellations. Each tessellation has uniform resolution in the geographic
dimensions. See section on Model Population to learn about how to use a GeoTessGrid like this to
build a GeoTessModel.

17

http://www.paraview.org/
http://www.google.com/earth

The property file for this example contains:

file: gridbuilder.properties

this properties file will result in a single GeoTessGrid

object consisting of 3 multi-level tessellations. The

triangles on the top level of each tessellation will each be

approximately uniform in the geographic dimensions.

Tessellation 0 will have triangles with edge lengths of about 32 degrees
Tessellation 1 will have triangles with edge lengths of about 16 degrees
Tessellation 2 will have triangles with edge lengths of about 4 degrees.

All three tessellations will be stored together in the same output file.
Separate vtk files will be generated for each tessellation for visualization.

H= o F 3 S S 3

specify GeoTessBuilder grid construction mode.
gridConstructionMode = scratch

number of multi-level tessellations to build
nTessellations = 3

the triangle size that is to be achieved on the
top tessellation level of each multi-level tessellation
baseEdgeLengths = 32 16 4

file to receive the GeoTessGrid definition
outputGridFile = three uniform tessellations.geotess

file to receive the vtk files used for visualization with paraview.
Three vtk files will be produced, one for each tessellation.
vtkFile = three uniform tessellations.vtk

Figure 4 illustrates the 3 multi-level tessellations that result from running this example.

Figure 4 — Three multi-level tessellations generated by example 1. The tessellations have triangle sizes of
approximately 32°, 16°, and 4°. Each image shows only the top level of the corresponding multi-level
tessellation. These multi-level tessellations are all components of a single GeoTessGrid object, stored in
a single GeoTessGrid output file. The continental outlines are for illustrative purposes only and are not
part of the GeoTessGrid object.

Example 2

The next example constructs a single GeoTessGrid object that is comprised of a single multi-level
tessellation. The top level of this tessellation will be composed of triangles mainly of approximately
8° edge lengths. But in the neighborhood of a single point in the North Atlantic, the triangles are
refined down triangles with edge lengths of approximately °.

18

The property file for this example contains:

file: gridbuilder point example.properties

this properties file will result in a single GeoTessGrid
object consisting of 1 multi-level tessellation with the
triangles on the top tessellation level having edge lengths
of about 8 degrees. In the neighborhood of a point located
at about 32N, 36W, the triangles are refined down to a
triangle size of about 1/8th of a degree.

H= 3 3 I3k

specify GeoTessBuilder grid construction mode.
gridConstructionMode = scratch

number of multi-level tessellations to build
nTessellations = 1

the triangle size that is to be achieved on the
top tessellation level, far from refinement point
baseEdgelLengths = 8

specify a single point. The tokens in the property value are:

1) lat-lon, 2) tessellation index, 3) triangle edge length in degrees,
4) latitude and 5) longitude. More points could have been

specified by including similar strings, separated by semi-colons.
points = lat-lon, 0, 0.125, 31.88984, -36.000000

file to receive the GeoTessGrid definition
outputGridFile = gridbuilder point example.geotess

file to receive the vtk file used for visualization with paraview
vtkFile = gridbuilder point example.vtk

Figure 5 illustrates the results of this example.

Figure 5 — Top level of the multi-level tessellation generated by example 2. Triangles far from the
refinement point have edge lengths of approximately 8° but the triangle surrounding the refinement point
has edge lengths of approximately z°.

19

Example 3

In this example a single GeoTessGrid object is constructed that is comprised of a single multi-level
tessellation. The top level of this tessellation will be composed of triangles mainly of approximately
8° edge lengths. But in the neighborhood of a path describing the mid-Atlantic Ridge, the triangles
are refined down triangles of edge length of approximately 0.5°. The path that defines the mid-
Atlantic Ridge is stored in a Google Earth .kmz file.

The property file for this example contains:

file: gridbuilder path example.properties

this properties file will result in a single GeoTessGrid
object consisting of 1 multi-level tessellation with the
triangles on the top tessellation leve having edge lengths

of about 8 degrees. In the neighborhood of a path describing
the trace of the mid-Atlantic Ridge, the triangles are refined
down to a triangle size of about 1 degree.

H= = = T 3k

specify GeoTessBuilder grid construction mode.
gridConstructionMode = scratch

number of multi-level tessellations to build
nTessellations = 1

the triangle size that is to be achieved on the
top tessellation level from from the path defined below.
baseEdgelengths = 8

specify a single path. The tokens in the property value are:
1) the name of the file containing the path, 2) tessellation
index, and 3) triangle size for triangles near the path.
paths = mid atlantic ridge.kmz, 0, 1.0

file to receive the GeoTessGrid definition

outputGridFile = gridbuilder path example.geotess

file to receive the vtk file used for visualization with paraview
vtkFile = gridbuilder path example.vtk

Figure 6 illustrates the results of this example.

20

Figure 6 — (left) The trace of the mid_Atlantic Ridge as viewed with Google Earth. (right) Top level of
the multi-level tessellation generated by example 3. Most of the triangles shown have edge lengths of
approximately 8° but triangles that span the mid-Atlantic Ridge have triangles with edge lengths about 1°.

Example 4

In this example a single GeoTessGrid object is constructed that is comprised of a single multi-level
tessellation. The top level of this tessellation will be composed of triangles mainly of approximately
8° edge lengths. All triangles with a corner inside a polygon surrounding the lower 48 states of the
US are refined to about 1° and triangles with a corner inside a polygon outlining the state of New
Mexico are refined to about %s°.

The property file for this example contains:

file: gridbuilder polygon example.properties

this properties file will result in a single GeoTessGrid
object consisting of 1 multi-level tessellation with the
triangles on the top tessellation level having edge lengths
of about 8 degrees. Triangles with at least one corner
inside a polygon surrounding the lower 48 states in the US
are refined to about 1 degree. Triangles with at least

one corner inside a polygon outlining the state of New
Mexico are further refined to about 1/8 the of a degree.

H= 3 3 H S T 3 3k

specify GeoTessBuilder grid construction mode.
gridConstructionMode = scratch

number of multi-level tessellations to build
nTessellations = 1

the triangle size that is to be achieved on the
top tessellation level from from the path defined below.
baseEdgelengths = 8

polygons = \

united states.kml, 0, 1.0 ; \
new mexico.kmz, 0, 0.125

21

file to receive the GeoTessGrid definition
outputGridFile = gridbuilder polygon example.geotess

file to receive the vtk file used for visualization with paraview
vtkFile = gridbuilder polygon example.vtk

Figure 7 illustrates the results of this example.

Figure 7 — (left) Polygons generated and viewed with Google Earth. (right) Top level of the multi-level
tessellation generated by example 4. Triangles far form the conterminous US have edge lengths of
approximately 8° but triangles with at least one corner inside the polygon surrounding the US have
triangles with edge lengths about 1°. Triangles with a corner in the polygon defining the state of New
Mexico have edge lengths of approximately “&°.

GeoTess Explorer

GeoTessExplorer is a Java application that implements a set of command line driven utilities to
extract maps, vertical slices, boreholes and vtk/kml/kmz plot files from a GeoTessModel. In order
to run GeoTessExplorer, locate the Java jar file geotess.jar in the Java section of the GeoTess
delivery and type java -jar geotess.jar’.

To make running GeoTessExplorer more convenient, cd to the GeoTessJava directory and locate the
bash script configure_geotess.sh. This script will do things: it will generate an executable script
called simply geotess that will launch GeoTessExplorer more conveniently. The script contains the
following contents:

#!/bin/bash

#

The substring '-Xmx????m' in the following execution

command specifies the amount of memory to make available
to the application, in megabytes.

22

#

java -Xmx1400m -jar /Users/sandy/work/GeoTess.2.0.2.Java/geotess.jar $*

The script will also print to the screen a recommended modification to the user’s .bash_profile or
.cshrc file that will add the directory where the new geotess script resides to the user’s path
variable. The recommended modification will look something like:

export PATH=/Users/sandy/work/GeoTess.2.0.2.Java:$PATH

Available functions include:
e version -- output the GeoTess version number
e toString -- print summary information about a model
e statistics -- print summary statistics about the data in a model

e extractGrid -- load a model or grid and write the grid to a separate file in either GeoTessGrid
ascii, GeoTessGrid binary, vtk, kml/kmz or GMT-compatible ascii formats.

¢ reformat -- load a model and write it out in another format

e getValues -- interpolate values at a single point

* interpolatePoint -- interpolate values at a single point, verbose output

¢ borehole -- interpolate values along a radial profile

* profile -- extract model values at vertex closest to specified latitude, longitude position
¢ slice -- interpolate values on a vertical plane defined by a great circle

o sliceDistAz -- interpolate values on a vertical plane defined by a great circle defined by a
point, a distance and a direction

* mapValuesDepth -- interpolate values on a lat, lon grid at constant depths

¢ mapValuesLayer -- interpolate values on a lat, lon grid at fractional radius in a layer
* mapLayerBoundary -- depth of layer boundaries on a lat, lon grid

¢ mapLayerThickness -- layer thickness on a lat, lon grid

e values3DBlock -- interpolate values on a regular lat, lon, radius grid

¢ function -- new model with attributes calculated from two input models

o vtkLayers -- generate vtk plot file of values at the tops of layers

23

+ vtkDepths -- generate vtk plot file of values at specified depths

« vtkLayerThickness -- generate vtk plot file of layer thicknesses

o vtkLayerBoundary -- generate vtk plot file of depth or elevation of layer boundaries
¢ vtkSlice -- generate vtk plot file of vertical slice

¢ vtkSolid -- generate vtk plot file of entire globe

* vtk3DBlock -- generate vtk plot file of values on a lat-lon-depth grid

+ vtkRobinson -- generate vtk plot of a Robinson projection of model data

+ vtkRobinsonLayers -- generate vtk plot of a Robinson projection of model data at tops of
multiple layers

+ vtkRobinsonPoints -- generate vtk plot of a Robinson projection of point data

+ vtkRobinsonTriangleSize -- generate vtk plot of triangle size on Robinson projection
¢ getLatitudes -- array of equally spaced latitude values

+ getLongitudes -- array of equally spaced longitude values

+ getDistanceDegrees -- array of equally spaced distances along a great circle

¢ translatePolygon -- translate polygon between kml/kmz and ascii formats

For all options except the vtk options, output is sent to standard out. The intention is that users
would either pipe the output to a file or insert the call to this program into a script with the output
piped to some other program.

If no arguments are supplied, a list of the recognized functions is output. If the first argument is a
recognized function but other required arguments are missing, a list of the required arguments is
output.

Many functions require a 'list of attributes’ as one of the command line arguments. This list can be a
string similar to '0,2,4-n’, which would return attributes 0, 2 and 4 through the number of available
attributes. 'n' would return only the last attribute. ‘all’ and '0-n’ would both return all attributes.
The list may not include any spaces.

For most functions, the first two arguments after the function name are the name of the input
model file and the relative path to the grid directory. Some models have the grid stored in the same
file with the model while other models reference a grid stored in a separate file. If the grid is stored
in the same file with the model, then the relative path to the grid directory is irrelevant but
something must be supplied in order to maintain the order of the argument list. If the grid is stored
in a separate file then the name of the file that contains the grid, without any directory information,
is stored in the model file. When the model is loaded, it has to be told the relative path from the
directory where the model is located to the directory where the grid file is located. If the grid is in a
separate file located in the same directory as the model file, provide the single character ".". Note

24

that models and grids also contain an MD5 hash of the grid file contents so the danger of a model
referencing the wrong grid is vanishingly small.

All the functions whose names start with 'vtk’ extract information from a GeoTessModel and store it
in a file in VTK format (http://www.vtk.org/VTK/img/file-formats.pdf). These files can be
visualized with free software called ParaView. Visit http: //www.paraview.orgfor more information
and downloads for various platforms.

Polygons

GeoTess makes use of polygons for several purposes. GeoTessBuilder uses polygons to define grid
resolution, and GeoTessModel can use polygons to select a subset of all Points in a GeoTessModel
for inclusion in a PointMap. To directly construct and make use of polygons in Java and C++
applications, consult the html documentation for those languages. This section describes polygon
file formats.

GeoTess uses two kinds of polygons, 2D polygons and 3D polygons. A 2D polygon consists of an
ordered list of geographic positions that define a closed loop on the surface of a unit sphere. A 3D
polygon is similar to a 2D polygon with regard to the geographic dimensions but adds a ‘top’ and a
‘bottom’ in the radial direction. The top and bottom are 2D surfaces of constant depth, constant
radius, or constant fractional position within layer.

A very convenient way to generate a 2D polygon is to use Google Earth
(http://www.google.com/earth). It provides a tool to define and edit 2D polygons by clicking on an
image of the Earth. The polygon can then be saved in either ascii (kml) or binary (kmz) formats.
Kml/kmz files have three limitations with respect to GeoTess applications. 1) They are only
accessible via the Java version of Geotess; the C++, C and FORTRAN versions cannot read these
formats. 2) 3D polygons cannot be stored in kml/kmz files because they have no ability to store the
2D surfaces that define the top and bottom of the 3D polygons. 3) With polygons stored in
kml/kmz files, it is not possible to record which ‘side’ of the polygon is ‘inside’ and which is
‘outside’. GeoTessExplorer has a utility function called translatePolygon to translate polygons back
and forth between ascii and kml/kmz formats.

Ascii files are parsed as follows:
Records that start with '#' are considered to be comment lines and are ignored.

If there is a record that starts with 'lat’' then all boundary point records will be assumed to be in
order lat-lon. If there is a record that starts with 'lon’ then all boundary point records will be
assumed to be in order lon-lat. If no record starts with 'lat' or 'lon’, boundary point records are
assumed to be in order lat-lon.

If there is a record that starts with ‘reference’ then the record is assumed to contain information
about the referencePoint which is used to determine which ‘side’ of the polygon is ‘inside’ and which
is ‘outside’. The second and third tokens in the record are interpreted as the latitude and longitude
of the referencePoint, in degrees (the order depends on the lat-lon record described above). If the
fourth and final token starts with 'in' then the reference point is considered to be 'inside' the
polygon, otherwise it is considered to be ‘outside’ the polygon.

25

http://www.vtk.org/VTK/img/file-formats.pdf
http://www.paraview.org/
http://www.google.com/earth

For kmz/kml files, and for ascii files which do not specify a referencePoint as described above, the
reference point will be the anti-pode of the normalized vector sum of the polygon boundary points
and will be deemed to be 'outside’ the polygon.

All other records are assumed to specify a boundary point in lat-lon or lon-lat order, in degrees. If a
record is encountered that cannot be parsed as two floating-point values, the record is simply
ignored without issuing any error or warning messages.

It is not necessary to ensure that the polygon is ‘closed’. If the first and last points of the polygon
definition are not identical, the polygon will be closed automatically.

If the first record of an ascii file is the string ‘POLYGON3D’ then the file defines a 3D polygon,
otherwise it defines a 2D polygon. If the file defines a 3D polygon, then it must also contain two
records which define the top and bottom surfaces of the polygon. Each of these records must
consist of 4 tokens as follows:

[top | bottom], [radius | depth | layer |, Z, layerIndex

The first token specifies whether the top or bottom surface is being defined. The file must contain
one record that starts with ‘top” and one record that starts with ‘bottom’.

The second token specifies how the surface is defined. The following possibilities are defined:

e radius/depth - The surface is defined by a constant radius/depth. The third token, Z,
specifies the radius/depth value in km. The final token, layerindex, specifies whether or not
the surface is constrained to a particular layer. If layerindex is negative, then the surface is
not constrained to any particular layer, it will be equal to the specified radius/depth, no
matter what layer that radius/depth corresponds to. If layerindex specifies a valid layer
index, then the surface will track the specified radius/depth value so long as the
radius/depth resides in the specified layer. If the specified radius/depth is above the top of
the specified layer, then the surface will track the top of the layer. If the radius is below the
bottom of the layer, then the surface will track the bottom of the layer.

e layer - In this case, the surface is everywhere constrained to reside in the layer specified by
layerindex, which must correspond to a valid layer. Z specifies a fractional position within
the layer. If Zis <=0, then the surface will track the bottom of the specified layer. If Zis
>= 1, the surface will track the top of the layer. For intermediate values, the surface will
track the corresponding fractional position within the layer.

The following is an example of the contents of a 2D polygon file:

Polygon2D

Reference 5 15 inside
Lon-lat

0 0

20 0

20 30

0 30

0 O

This 2D polygon will consist of a simple box from ON, OE at the bottom left corner, extending to
20N, 30E at the upper left corner. The reference point is specified to be located at 5N, 15E and is

26

‘inside’ the polygon. Because the first 3 lines all specify default behavior, an equivalent
specification for this polygon would have been simply:

0 O
20 O
20 30

0 30

Here is an example of the contents of a 3D polygon file:

#This file defines a 3D polygon
Polygon3D
TOP Layer 1.000 6
BOTTOM Depth 4000.000 -1
Reference 5 15 outside
Lon-lat
0 0
20 O
20 30
0 30

The top of the polygon is defined by a surface that conforms to the top of layer 6. The bottom
surface is defined by a constant depth at 4000 km below the surface of the ellipsoid and is
unconstrained to conform to any particular layer (it may reside in different layers at different
geographic locations). The boundary points are specified in longitude, latitude order so the box
extends from ON OE in the lower left to 30N, 20E in the upper right. The reference point is located
at 15N, 5E and is ‘outside’ the polygon.

Installation Instructions

Setup

All required GeoTess modules should be placed in the same directory, unless you wish to modify
the makefiles. The makefiles assume their module is in the same top level directory as all the other
modules.

There are no third party dependencies to GeoTess, however there are inter-dependencies. The
GeoTessCPP and GeoTessJava modules are independent. The examples, GeoTessCShell, and
GeoTessFShell are not independent. Each example requires its respective language module
installed. GeoTessCShell requires GeoTessCPP and GeoTessFShell requires GeoTessCShell.

27

#

"'“ GeoTessCExamples
|

| | -

Colors represent code:
W o

B o<

. : Fortran9s

Build Environments

The various GeoTess modules come with makefiles for Linux, SunOS, MacOS, and Windows - except
for Java (See section “Java Build”). This was done to keep the complexity to the command line,
which is a common ground between these systems. These makefiles were made for common
environments for each of these operating systems. Here are the assumptions that are made for
each environment:

e Windows: Visual Studio is installed as well as the GNU Make program for windows. This
can be found here, and is used for running the makefiles on the windows command prompt.
For the C++ and C code, it is compiled using the cl.exe compiler and link.exe linker from the
Visual Studio tool chain. The FORTRAN example code is compiled with gfortran, which can
be installed in windows via MinGW.

e SunOS: GeoTess is built on Sun0S using SunStudio 12 using CC and gfortran using gnu
make.

e Linux: GeoTess is built on Red Hat linux with gcc and gfortran using gnu make.

e MacOS: GeoTess is built using gcc and gfortran using gnu make.
All of the required tools must be accessible via the command line through the environment.
It is assumed when building the modules that all other required modules are in the same top level
directory. For example: To build GeoTessCShell, which is in the directory “GeoTessRoot”, since the

C shell requires the C++ library, the makefile assumes that the C++ code is in
“GeoTessRoot/GeoTessCPP”.

28

http://gnuwin32.sourceforge.net/packages/make.htm
http://www.mingw.org/

Makefile Usage

There are three makefiles that come with each non-java module. One master makefile, and two
makefiles — one for Windows builds, and the other for the Linux/Unix/Mac builds. The complexity
of making one makefile that could handle both windows path delimiters and other differences from
Linux/Unix/Mac was too high, so it was split into two different makefiles. The master makefile
chooses the right one to run depending on the operating system.

To call the makefile specific to your OS on the command line, just type “make” in the directory
containing the makefiles. The master makefile will select the right sub-makefile for the OS and pass
down any arguments given. To supply a target to the makefile, call make with the target as the first
argument. There are three targets commonly used in these files:
e “all”: Builds all the module’s object files and then produces the .exe/.dll/.so/.dylib result.
For executable results, they are written to the “bin” directory of the module. For libraries
they are written to the “lib” directory of the module.

e “clean_objs”: Removes all object files but leaves the .exe/.dll/.so/.dylib results.

e “clean”: Removes all objects files and .exe/.dll/.so/.dylib results. This target should return
the module directory to the same state it was in before a call to “make all” was executed.

To change the build between 32 and 64 bit the makefiles can be given the extra argument ARCH=X
where X can be “32bit” or “64bit”. The default mode is 64 bit. If ARCH is set to something else or

not provided, the build will be done in 64 bit mode. More detail about switching between 32 and 64
bit is given later.

Makefile Results
These are the results of running “make” in each module. Each path is relative to the module itself.
For Windows (including but not limited to):

e GeoTessCPP: lib\libgeotesscpp.dll, lib\libgeotesscpp.dll.manifest, lib\libgeotesscpp.lib,
lib\libgeotesscpp.exp

e GeoTessCPPExamples: bin\geotesscppexamples.exe

o GeoTessCShell: lib\libgeotesscshell.dll, lib\libgeotesscshell.dll.manifest,
lib\libgeotesscshell.lib, lib\libgeotesscshell.exp

e GeoTessCExamples: bin\crust.exe, bin\simple.exe

o GeoTessFShell: lib\libgeotessfshell.dl], lib\libgeotessfshell.dll.manifest,
lib\libgeotessfshell.lib, lib\libgeotessfshell.exp

e GeoTessFExamples: bin\crust.exe, bin\simple.exe

For Linux/Unix/Mac:

29

e GeoTessCPP: lib/libgeotesscpp.so

e GeoTessCPPExamples: bin/geotesscppexamples

e GeoTessCShell: lib/libgeotesscshell.so

e GeoTessCExamples: bin/crust, bin/simple

o GeoTessFShell: lib/libgeotessfshell.so

e GeoTessFExamples: bin/crust, bin/simple
Makefile Production

This section describes the general method that each makefile uses to produce the results. This
includes what files from other modules are required. All paths are relative to the module itself.

e GeoTessCPP: Compiles source in “src” with the header files in “include” to produce the
shared library result.

e GeoTessCPPExamples: Compiles the source in “src” with the header files in
“../GeoTessCPP/include” and links with the shared library in “../GeoTessCPP/lib” to
produce the executable result.

o GeoTessCShell: Compiles the source in “src” with the header files in “include” and
“../GeoTessCPP/include” and links the result with the shared library in “../GeoTessCPP/lib”
to produce the result.

e GeoTessCExamples: Compiles the source in “src” with the header files in
“../GeoTessCShell/include” and links with the shared library in “../GeoTessCShell/lib” to
produce the result.

o GeoTessFShell: Compiles the source in “src” with the header files in “include” and
“../GeoTessCShell/include” and links with the shared library in “../GeoTessCShell/lib” to
produce the result.

e GeoTessFExamples: Compiles the source in “src” and the modules in
“../GeoTessFShell/include” and links with the shared library in “../GeoTessFShell/lib” to
produce the result.

There is one difference to this on SunOS however. Since FORTRAN puts a “_" on each symbol name
the makefiles supply arguments to the compilers to remove them to be compatible with C. The
problem on SunOS is that the intrinsic FORTRAN libraries still have the “_” on them, so compiling
with those flags causes the build to break. To solve this, if the GeoTessFExamples makefile is run on
SunOS it will copy the source code for the examples and add a “_" to the names of the intrinsic
functions used.

30

Changing between 32 and 64 bit modes

In some cases switching between 32 and 64 bit modes is more complicated than giving the ARCH=X
argument to the makefiles (discussed in usage). The complexity appears when trying to switch on
SunOS and Windows. Here are some notes on what I had to do to get the build to work properly.

Windows: This is the most difficult environment to switch modes. First off, unlike gcc, simply
changing a command line argument isn’t enough to switch the cl compiler from x86 to x64. To
compensate for this however, windows provides a batch file called “vcvarsall.bat” (Located in:
“Microsoft Visual Studio <version>/VC”) that can be used to set the environment in the current cmd
prompt to use the correct compilers. Calling the batch file with no argument sets the 32 bit tools,
and using the argument “amd64” sets the 64 bit tools.

Unfortunately, this does not completely resolve the issue. . While your compiler might be set to
build the correct mode of binaries, the linked runtime dlls could still be incorrect. The best method
of solving this is by using the “depends” program for widows found at
http://www.dependencywalker.com/. This program looks up all the dependencies a binary file has
on your system using the same method that windows uses to resolve locations. Then it will tell you
which dlls are the wrong bit mode, and if any are broken or missing. There is one important caveat
to using this tool. There are 32 and 64 bit versions of this tool, and you have to make sure to use
the same mode as what you are trying to compile. Windows will re-route any 32 bit process from
entering “Windows/system32” to “Windows/sysWOW64” and vice versa. So if you use a 64 bit
depends.exe program to trace problems with a 32 bit dll, it will think all of the system libraries are
the wrong versions because it is being directed away from system32 where they are contained.
Once you figure out what dlls are incorrect, search for the correct versions and modify your
environment to point to those locations rather than the incorrect ones. Generally the user’s PATH
variable or the system’s PATH variable are where Windows searches.

Another issue encountered involved switching between 32 and 64 bit when using the MinGW port
of gfortran. It seems only one version of the required libraries “libgfortran-3.dll” and “libquadmath-
0.dll” are given in an installation. I was able to find the missing version on the internet, and my
preferred method of installation was to rename the existent libraries in “MinGW /bin” to something
else, and replace them with the correct version. Do not remove the incorrect libraries. I did this
because this is where gfortran looks for dlls and my efforts to make it look elsewhere were not
effective.

Thatis all I can recall on the issue, and keep in mind after these changes using the argument
ARCH=X is still required.

SunO0S: Thankfully the problems found here are not nearly as complicated. Using the argument
ARCH=X will still cause gcc to generate the correct mode of binaries, but the LD_LIBRARY_PATH
environment variable needs to change to point to the correct version of libraries. To make this
easy, [added a bit of code to my .bashrc which [will share here:

MACHINE=64

if [$0S == Sun0S]
then

if [SMACHINE == 32]
then

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/SunStudio12/SUNWspro/lib: /usr/sfw/lib
else

31

http://www.dependencywalker.com/

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/SunStudio12/SUNWspro/lib/sparc/64:/usr/sfw/lib/64
fi
fi

All you have to do then is change the value of “MACHINE” manually and when you start your shell it
will look in the correct areas for the libraries, assuming of course your installation is the same as
mine.

C and FORTRAN Shells

This section will detail how and why the C and FORTRAN shells were constructed in the ways they
were. The main idea was to use the C++ implementation and just refer to it for the heavy lifting.
Re-implementing the library in C and FORTRAN would be unreasonable and as a result the shells
(also known as interfaces) are very light. There were some complexities that were not foreseen
that cause some cases to be less efficient than desired.

C Shell

The C Shell is implemented in C++ in such a way that pure C code can access the shared library
without any notion that it is C++.

NOTE: Any C Shell files that start with an underscore are not to be used by users of the C Shell, they
are private and for implementation uses only.

Headers

There are a few points to notice that are common with each header file in the C Shell. First off, the
header files have to be 100% C code, no C++. The only caveat is the usage of the macros:

#ifdef _cplusplus
extern "C"

{
#endif

<body of header file>

#ifdef _cplusplus

}
#endif

This is so that the C++ code implementing the C Shell can understand the header files and when
imported by pure C code it can understand them as well.

The second point to notice is the usage of the “GEO_TESS_EXPORT_C” definition used on every
public function. This is defined in “GeoTessCShellGlobals.h”. This is used on Windows operating
systems to define “__declspec(dllimport/dllexport)” which is used when creating dlls. This will
define the functions that need to be imported from a dll, or exported into a dll upon compile time.
On other platforms this is defined as either “extern” or nothing. Extern isn’t needed but is used for
future extension.

32

Naming Conventions

o For the C wrappers of GeoTess objects they are named the same thing as the base object
with a “C” appended to the name - GeoTessModel -> GeoTessModelC. The same is done for
the files implementing the objects.

e The functions of each object keep the same base name as the C++ variants, but place a
shortened version of the object name on the front separated by an underscore.
GeoTessModel.writeModel() -> geomodel_writeModel(). This is done to avoid symbolic
conflicts with the C++ library. In the case where a function is overridden, a number starting
from 1 is appended to the name to avoid symbolic conflicts internally.

C Shell Source

The basic form of every function in the C Shell is to extract the C++ object from the given C wrapper,
call the appropriate method with the given arguments, and return the result watching for any
exceptions. Results may need to be converted from C++ objects to C friendly ones first. The main
issues with simply providing a wrapper to the C++ library are: exception handling, data structures,
and GeoTess objects.

Exception Handling:

Clearly C has no notion of exceptions. To get around this every call to a GeoTess function in the
implementation is wrapped in a try-catch block. This does increase the time for each call to a
GeoTess function, but aside from re-implementing GeoTess in C there didn’t seem to be a better
way. Once each exception is caught, it is then placed into a C data structure made for keeping a
short log of exceptions. This is the ErrorCache object. It is basically a stack that keeps the 19 latest
error messages. This object will be given the error message of the thrown exception, and can be
asked if it has any messages stored. The error messages can then be popped off and used by the
user of the C Shell. The interface for this object is public to the C users.

There are two blocks in the catch statement of every try-catch. One for the GeoTessException,
which has should have a detailed explanation of the problem, and “...” meaning everything else. In
the last case a string meaning of the exception can’t be concluded so one is generated with the file
and line number where it was caught.

All GeoTess wrappers contain a reference to an ErrorCache, in fact to the same one. The
constructor for the ErrorCache is a singleton and it keeps a reference count to know when to delete
the memory.

Data Structures:

Data Structures such as Vectors or Maps in C++ don’t have a representation in the C standard
library. They must be converted in to basic arrays for C users. Most cases is from String to char*
which is simple, and Vectors to arrays. More complicated forms are Maps to dual arrays of keys and
values. The implementations of these conversions are in “_Util.cc”.

Another type of conversion needed is the various enums in the C++ library to the int based enums
in C. The method used here was to create the C enums and have the elements listed in the same
order as the C++ enums. From there conversion between the two is easy. The C++ enums are put
into an array, so the int value of the C enums are used as the index of that array. Starting with the
C++ enums, their index in the array is found and that index is type cast to the type of C enum
desired.

33

GeoTess Objects:

The various objects that GeoTess provides also don’t have a C representation. A struct for each
object type is created with two pointers: void* and ErrorCache*. The void* points to the actual C++
object, but hides the type allowing C code to use it. When this struct is given to the C Shell for use as
an object, the shell pulls the actual C++ object out of the void* and uses that. This keeps the
interface thin and easy to use.

The implementations of the constructors for the various GeoTess objects always create the wrapper
since this includes the ErrorCache with it. If an exception is thrown in the library call to the
constructor then the wrapper is returned with a null void* and the error cache holding the
exception.

The downside of using the wrappers is that sometimes a GeoTess C++ object can be associated with
another C++ object in the library so it should not be deleted, yet your use of the wrapper has come
to an end. The C Shell destructors of the wrappers allow users to select whether they want just the
wrapper freed or the wrapper and the underlying C++ object. This can get confusing at times, but
the C header files should document when it is safe and when it is not to fully delete a wrapper.

34

F Shell

The FORTRAN Shell is more complicated in design and less complicated in implementation than the
C Shell. Itis designed to be used by FORTRANO95 code. The idea remains the same though, to
provide a way for FORTRAN code to call the C++ functions. The additional complexity of creating a
FORTRAN shell is offset because the C++ library has already been distilled a bit by the C Shell. So
instead of calling the C++ library directly, the FORTRAN Shell calls the functions in the C Shell. The
FORTRAN Shell is written in pure C, in header and source files.

Headers

Like the C Shell header files, the FORTRAN headers define “GEO_TESS_EXPORT _F” for control of
what functions need to be imported and exported from a dll. This however is where the common
points end. There are some very important points to note about the function prototypes in the
FORTRAN Shell:

1. Every argument must be a primitive type pointer. FORTRAN passes arguments around via
pointer, and only commonly shares primitives with C.

2. The exception to 1 is strings. You still pass a FORTRAN string to C through char*
arguments, but FORTRAN also appends to the argument list the size of the string as well.
Therefore every function that takes a string also allocates an int argument at the end of the
argument list that is of type “int” - example:

void do_something(char* c1, char* c2, double* clutter, int s1, int s2);

Note that the sizes (s1 s2) are in order of the string arguments (c1 c2). The size arguments
are automatically supplied by the FORTRAN language, so calling these functions with the
sizes supplied is incorrect. Correct form of calling is:

call do_something(“Hello”, “World”, 0.5)
If any additional arguments are supplied such as:
call do_something(“Hello”, “World”, 0.5 5, 5)

This could result in a stack corruption as FORTRAN will give the explicit 5 arguments and
append 2 more for the sizes of the strings. This is more arguments than the C code expects
and will overwrite parts of the C stack.

3. Functions can only return a single primitive value or null. All array results must be handled
by passing in an array and writing the result to it. This means there must be a pre-defined
size to the array or it can be figured out before hand at runtime.

4. Since there are no enum types, the header file comments will describe the enum types that
are valid to the function and give the value (int) that translates to that enum. This is the

same with Booleans.

5. FOTRAN and C don’t share the same names for primitive types. Here are the mappings that
are used: (C -> FORTRAN)

35

e double : DOUBLE PRECISION
o float: REAL

e int:INTEGER

e short: INTEGER*2

e long(32): INTEGER*4

e long(64): INTEGER*8

e char: CHARACTER

Naming Conventions

The naming conventions also follow the method that the C Shell uses. Each function name is based
off the C++ name, and the name of the GeoTess object is put in front of the name of the function
connected by an underscore. In the case of FORTRAN however, “f” is the first character of every
function to avoid symbolic conflicts. Also, since FORTRAN compilers ignore case (converts all
characters to lowercase), they don’t understand the C symbols that have uppercase letters -
because of this every FORTRAN Shell function flattens the name by replacing each uppercase letter
with the lowercase variant, and putting in an underscore to improve readability. Otherwise the
names still match what the C Shell uses.

FORTRAN Shell Source

Thankfully the C Shell makes implementing the FORTRAN Shell simpler because it already distills
the C++ library to just primitives, arrays, and the GeoTess wrappers. There are other problems to
be handled.

State-Machine

My understanding of FORTRAN is very limited, so [understand it to not be able to handle objects.
Because of this the FORTRAN Shell is implemented as a state-machine. There are internal pointers
to the various GeoTess C wrappers that can be set and updated through the FORTRAN Shell. For all
of the examples this seemed sufficient. In cases where multiple instances of an object were
required, they were simply expressed as the primitives required to access them from the model.
Specifically this is the “fgeoprofile_” set of functions. Instead of having the idea of instances, they
are represented as the vertex and layer at which they sit in the model.

Indices

Since FORTRAN is a language that the first index of an array is 1 and C starts at 0 the FORTRAN
Shell converts indices between the two languages. All incoming indices (from FORTRAN) are
reduced by one, and any outgoing (to FORTRAN) indices are increased by one. A side effect of this
is if you print any information that is generated from within the C++ library and it includes indices,
they will be off by 1 from what a FORTRAN programmer expects them to be.

Arrays as Results

Since arrays cannot be returned from FORTRAN functions, the C code implementing the FORTRAN
shell can’t return any either. To get around this, the C code will ask for the appropriately sized
array and copy its result to the given array. In most cases the size (or upper limit on the size) is

36

given either in documentation or can be discovered at runtime. For toString methods this isn’t the
case as it is hard to guess what the size is, and it isn’t critical to get the size right. For this it’s best to
just get an array of 2-4kB and resize as necessary.

The functions asking for an array to write the result of their computations to also ask the size of the

given array. While most of them will know ahead of time what the size should be, to be safe they
ask for it as well. They will never write more data than what the given size says is possible.

File formats

GeoTess models are stored in files in two different formats: ascii and binary. It is possible to
convert between these two formats using functionality provided in the GeoTess software.

GeoTess model information can be logically divided into 3 sections: metadata, profiles, and grid.
This information can be stored in either one or two files. If the model is stored in a single file then
the three components are written to the file in the order specified. It is also possible to write the

metadata and profile information to one file and the grid to another. In the latter case, the file with
the metadata and the profiles also includes a reference to the file that contains the grid information.

Binary Format

In this section, the format of GeoTess binary model and grid files is described.

Binary Model File

File identification The 12 characters: GEOTESSMODEL 12 character string NOT

string preceded by integer string
length

Model file format Model file format version number in range 1 | 4-byte integer in range of 1

version number to 65535. The two least significant bytes to 65535

store the version number and the two most
significant bytes are zero. This value is also
used to determine if the file is stored in big-
endian or little-endian format.

Software version The name of the software that was used to Integer length of string
generate the content of the model, and its followed by string.
version number

Date The date that the content of the model was Integer length of string
generated followed by string.

Model description Model description. Integer length of string
followed by string.

37

Attribute names

A list of the names of all the attributes stored
in the model, separated by semi-colons. For
example: ‘vp; vs; density’.

nAttributes is the number of attributes
specified.

Integer length of string
followed by string.

Attribute units

The units of the defined attributes, separated
by semi-colons. For example: 'km/sec;
km/sec; g/cc’. The number of entries must
be equal to nAttributes.

Integer length of string
followed by string.

Layer names

The names of all the layers that define the
model, separated by semi-colons and listed in
order of increasing radius. For example:
‘core; mantle; crust’.

nLayers is the number of layer names
specified.

Integer length of string
followed by string.

Data Object type The type of the Data objects stored in this Integer length of string
model. Must be one of DOUBLE, FLOAT, followed by string.
LONG, INT, SHORT or BYTE.

nVertices Number of vertices defined in the grid. Integer

Layer index -
tellellation index
map.

An integer for each layer in the model
specifying the index of the multi-layer
tessellation that supports that layer.

nLayers integers.

Profile objects

A Profile object for each layer at each vertex
in the model. See section Profiles for Profile
definitions.

nVertices * nLayers Profile
objects. Layer index varies
fastest. Profiles associated
with the same vertex are
listed in order that
increases with radius.

Grid file specifier

String specifying the file in which the grid
information is stored. If the grid file specifier
is the single character *’, then the grid
information is stored in the same file as the
model data, immediately following the
gridID. Otherwise, the grid file specifier
indicates the name of the file that contains
the grid information.

Integer length of string
followed by string.

38

gridID

Every grid has a unique gridID that is stored
in both the grid file and in all the model files
that use that grid. When the model and grid
are loaded, a check is performed to ensure
that the two gridIDs match exactly. While
any string can be used as a gridID, an MD5
hash of the vertices, triangle indices, level
indices and tessellation indices is an excellent
choice.

Integer length of string
followed by string.

Binary Profile Objects

ProfileEmpty - Profile object consisting of a bottom and top radius but no data.

Profile type index ProfileEmpty objects have index 0 Byte 0
radiusBottom Radius at the bottom of the profile, in km Float
radiusTop Radius at the top of the profile, in km Float
ProfileThin - Profile object that represents a zero-thickness profile.

Profile type index ProfileThin objects have index 1 Byte 1
Radius Radius of the profile, in km. Float

Data Data object associated with this profile Data object

ProfileConstant - A finite thickness profile characterized by a single data object.

Profile type index ProfileConstant objects have index 2 Byte 2
radiusBottom Radius at the bottom of the profile, in km Float
radiusTop Radius at the top of the profile, in km Float

Data Data object associated with this profile Data object

ProfileNPoints - A profile object comprised of two or more radii and an equal number of data

objects.

39

Profile type index

ProfileNPoints objects have index 3

Byte 3

nNodes

Number of nodes on profile

Integer

Radius values and
Data objects

Radius values and Data objects

Float, followed by a Data
object. This combination is
repeated nNodes times.

ProfileSurface - Profile object that represents data, but no radius

Profile type index

ProfileSurface objects have index 4

Byte 4

Data

Data object associated with this profile

Data object

Binary Data Objects

Data Objects consist of a 1D array of numeric values, where all of the values are of type double,
float, long, int, short or byte.

All Data Objects in the model must be of the same type and must have the same number of

elements. The number of elements in every Data Object must be equal to nAttributes, which is the
number ‘attribute names’ specified in the file. Whenever a Data Object is specified in the file format
specification sections of this document, the nAttributes data primitives that comprise the Data
Objects are specified in the file in sequential order.

Binary Grid Files

File identification
string

The 11 characters: GEOTESSGRID

11 character string NOT
preceded by integer string
length

Grid file format
version number

Grid file format version number in range 1
to 65535. The two least significant bytes
store the version number and the two most
significant bytes are zero. This value is also
used to determine if the file is stored in big-
endian or little-endian format.

4 byte integer in range 1 to
65535.

Software version

The name of the software that was used to
generate the content of the grid, and its
version number

Integer length of string
followed by string.

Date

The date that the content of the grid was
generated

Integer length of string
followed by string.

40

gridID

Every grid has a unique gridID that is
stored in both the grid file and in all the
model files that use that grid. When the
model and grid are loaded, a check is
performed to ensure that the two gridIDs
match exactly. While any string can be
used as a gridID, an MD5 hash of the
vertices, triangle indices, level indices and
tessellation indices is an excellent choice.

Integer length of string
followed by string.

nTessellations

The number of multi-level tessellations that
define the grid

4 byte integer

nLevels

The total number of tessellation levels that
define the grid. This is the sum of the
number of tessellation levels in all the
multi-level tessellations in the grid.

4 byte integer

nTriangles

The total number of triangles that defines
the grid. This is the sum of the number of
triangles in all tessellation levels of all
multi-level tessellations.

4 byte integer

nVertices

The number of vertices that define the grid.
Each vertex is a 3D unit vector.

4 byte integer

Tessellation level
indices

for each tessellation two integers are
specified: the index of the first level and the
index of the last level plus one, that defines
the tessellation.

nTessellations*2 4-byte
integers.

Level triangle indices

For each tessellation level two integers are
specified: the index of the first triangle and
the index of the last triangle plus one, that
define the level.

nLevels*2 4-byte integers.

Vertex positions

For each vertex 3 doubles are specified that
define the x, y and z components of the unit
vector corresponding to the position of the
vertex

nVertices*3 8-byte doubles

Triangle indices

For each triangle 3 integers are specified
that define the indices of the 3 vertices that
define the triangle

nTriangles*3 4-byte integers.

41

Ascii Format

In this section, the format of GeoTess ascii model and grid files is described.

Ascii Model Files

File identification
string

The 12 characters: GEOTESSMODEL

12 character string followed
by line terminator.

Model file format
version number

Model file format version number in range
1 to 65535.

Integer in range 1 to 65536,
followed by a line

terminator.
Software version The name of the software that was used to | String followed by line
generate the content of the model, and its terminator.
version number
Date The date that the content of the model was | String followed by line
generated terminator.
Begin model The string “<model_description>" on aline | String followed by line
description section by itself. terminator.

Model description.

Model description.

As many strings as desired,

separated by line
terminators.
End model The string “</model_description>" on a String followed by line
description line by itself. terminator.

Attribute names

A list of the names of all the attributes
stored in the model, separated by semi-
colons. For example: ‘vp; vs; density’.

nAttributes is the number of attributes
specified.

String “attributes: “ followed
by a semi-colon delimited list
of attribute names. Listis
followed by a line
terminator.

Attribute units

The units of the defined attributes,
separated by semi-colons. For example:
‘km/sec; km/sec; g/cc’. The number of
entries must be equal to nAttributes.

String “units: “, followed by a
semi-colon delimited list of
units. List is followed by a
line terminator.

42

Layer names

The names of all the layers that define the
model, separated by semi-colons and listed
in order of increasing radius. For example:
‘core; mantle; crust’.

nLayers is the number of layer names
specified.

String “layers: “, followed by
a semi-colon delimited list of
layer names. List is followed
by a line terminator.

Data Object type The type of the Data objects stored in this String followed by a line
model. Must be one of DOUBLE, FLOAT, terminator.
INT, SHORT or BYTE.

nVertices Number of vertices defined in the grid. Integer, followed by a line

terminator.

Layer index -
tessellation index
map.

An integer for each layer in the model
specifying the index of the multi-layer
tessellation that supports that layer.

nLayers integers, with the
last one followed by a line
terminator.

Profile objects

A Profile object for each layer at each
vertex in the model. See section Profiles for
Profile definitions.

nVertices * nLayers Profile
objects. Layer index varies
fastest. Profiles associated
with the same vertex are
listed in order that increases
with radius.

Grid file specifier

String specifying the file in which the grid
information is stored. If the grid file
specifier is the single character *’, then the
grid information is stored in the same file
as the model data, immediately following
the gridID. Otherwise, the grid file specifier
indicates the name of the file that contains
the grid information.

String followed by a line
terminator.

gridID

Every grid has a unique gridID that is
stored in both the grid file and in all the
model files that use that grid. When the
model and grid are loaded, a check is
performed to ensure that the two gridIDs
match exactly. While any string can be
used as a gridID, an MD5 hash of the
vertices, triangle indices, level indices and
tessellation indices is an excellent choice.

String followed by a line
terminator.

43

Ascii Profile Objects

ProfileEmpty - Profile object consisting of a bottom and top radius but no data.

Profile type index ProfileEmpty objects have index 0 Byte 0

radiusBottom Radius at the bottom of the profile, in km Float

radiusTop Radius at the top of the profile, in km Float followed by a line
terminator.

ProfileThin - Profile object that represents a zero-thickness profile.

Profile type index ProfileThin objects have index 1 Byte 1

radius Radius of the profile, in km. Float

data Data object associated with this profile Data object followed by a

line terminator.

ProfileConstant - A finite thickness profile characterized by a single data object.

Profile type index ProfileConstant objects have index 2 Byte 2

radiusBottom Radius at the bottom of the profile, in km Float

radiusTop Radius at the top of the profile, in km Float

data Data object associated with this profile Data object followed by a

line terminator.

ProfileNPoints - A profile object comprised of two or more radii and an equal number of data

objects.

Profile type index ProfileNPoints objects have index 3 Byte 3

nNodes Number of nodes on profile Integer

Radii and Data Radii and Data objects Floating point value,
objects followed by a Data object

followed by a line
terminator. This
combination is repeated
nNodes times.

44

ProfileSurface - Profile object that represents data, but no radius

Profile type index ProfileSurface objects have index 4 Byte 4

Data Data object associated with this profile Data object followed by a
line terminator.

Ascii Data Objects

Data Objects consist of a 1D array of numeric values, where all of the values are of type double,
float, int, short or byte.

All Data Objects in the model must be of the same type and must have the same number of
elements. The number of elements of every Data Objects must be equal to nAttributes, which is the
number of ‘attribute names’ specified in the file. Whenever a Data Object is specified in the file
format specification sections of this document, the nAttributes data primitives that comprise the
Data Objects are specified in the file in sequential order.

Ascii Grid Files

File identification The 11 characters: GEOTESSGRID 11 character string followed by

string line terminator.

Grid file format Grid file format version number in range 1 | Integer in range 1 to 65536,

version number to 65535. followed by a line terminator.

Software version The name of the software that was used to | String followed by line
generate the content of the grid, and its terminator.
version number

Date The date that the content of the grid was String followed by line
generated terminator.

Comment Comment that serves to make the file more | Ascii text starting with '#’ and
readable. ending with a line terminator.

45

gridID

Every grid has a unique gridID that is
stored in both the grid file and in all the
model files that use that grid. When the
model and grid are loaded, a check is
performed to ensure that the two gridIDs
match exactly. While any string can be
used as a gridID, an MD5 hash of the
vertices, triangle indices, level indices and
tessellation indices is an excellent choice.

String followed by a line
terminator.

Comment

Comment that serves to make the file more
readable.

Ascii text starting with '#’ and
ending with a line terminator.

nTessellations

The number of multi-level tessellations that
define the grid

Integer

nLevels

The total number of tessellation levels that
define the grid. This is the sum of the
number of tessellation levels in all the
multi-level tessellations in the grid.

Integer

nTriangles

The total number of triangles that define
the grid. This is the sum of the number of
triangles in all tessellation levels of all
multi-level tessellations.

Integer

nVertices

The number of vertices that define the grid.
Each vertex is a 3D unit vector.

Integer followed by line
terminator.

Comment

Comment that serves to make the file more
readable.

Ascii text starting with '#’ and
ending with a line terminator.

Tessellation level
indices

For each tessellation two integers are
specified: the index of the first level and the
index of the last level plus one, that defines
the tessellation.

nTessellations*2 integers with
each pair of integers followed
by a line terminator.

Comment

Comment that serves to make the file more
readable.

Ascii text starting with '#’ and
ending with a line terminator.

Level triangle indices

For each tessellation level two integers are
specified: the index of the first triangle and
the index of the last triangle plus one, that
define the level.

nLevels*2 integers with each
pair of integers followed by a
line terminator.

Comment

Comment that serves to make the file more
readable.

Ascii text starting with '#’ and
ending with a line terminator.

46

Vertex positions

For each vertex 3 doubles are specified that
define the x, y and z components of the unit
vector corresponding to the position of the
vertex

nVertices*3 doubles with each
triple of doubles followed by a
line terminator.

Comment

Comment that serves to make the file more
readable.

Ascii text starting with '#’ and
ending with a line terminator.

Triangle indices

For each triangle 3 integers are specified
that define the indices of the 3 vertices that
define the triangle

nTriangles*3 integers with each
triple of integers followed by a
line terminator.

47

	Table of Contents
	Introduction
	Model Components
	Library Interactions
	Model population
	Step 1 – Specify MetaData
	Step 2 – Construct a Model
	Step 3 – Add Data

	Model I/O
	Model interrogation
	Grid Information
	Accessing Data Stored in the Model
	Interpolating Attribute Values at Arbitrary Locations

	Extending GeoTess

	GeoTessBuilder
	GeoTessBuilder Properties File
	Model Refinement Mode
	Construction-From-Scratch Mode
	Plot File Properties

	GeoTessBuilder Examples
	Example 1
	Example 2
	Example 3
	Example 4

	GeoTess Explorer
	Polygons
	Installation Instructions
	Setup
	Build Environments
	Makefile Usage
	Makefile Results
	Makefile Production
	Changing between 32 and 64 bit modes

	C and FORTRAN Shells
	C Shell
	Headers
	Naming Conventions
	C Shell Source
	Exception Handling:
	Data Structures:
	GeoTess Objects:

	F Shell
	Headers
	Naming Conventions
	FORTRAN Shell Source
	State-Machine
	Indices
	Arrays as Results

	File formats
	Binary Format
	Binary Model File
	Binary Profile Objects
	Binary Data Objects
	Binary Grid Files

	Ascii Format
	Ascii Model Files
	Ascii Profile Objects
	Ascii Data Objects
	Ascii Grid Files

