H₂ Carriers for long duration energy storage

Tom Autrey (tom.autrey@pnnl.gov)

DOE Workshop on Long Duration Energy Storage March 10, 2021

- PNNL (Mark Bowden, Kriston Brooks, Ba Tran, Kat Grubel, Jothi Kothandaraman, Abhi Karkamkar, Sam Johnson, Oliver Gutierrez, Ahmed Tbaileh, Chirag Mevawala, Shuyun Li, Vish Viswanathan, Mallik Vallem)
- LBL (Hanna Breunig, Peng Peng, Kelvin Yoro, Ji Su, Jinghua Guo, Jeff Long, Hiroyasu Furukawa)
- NREL (Tom Gennett, Noemi Leick)
- LLNL (Sneha Akhade, Brandon Wood)
- SNL (Mark Allendorf, Vitalie Stavila, Jon Snider, Matt Witman)
- ANL (Rajesh Ahluwalia, Dennis Papadias)
- University of Hawaii (Craig Jensen, McKinley Prager, Sunil Shrestha)
- University Southern California (Travis Williams, Nick Alfonso)
- Washington State University (Hongfei Lin, Zhun Dong, Shaoqu Xie)
- DOE (Zeric Hulvey, Ned Stetson, Scott Jorgenson, Kevin Ott)

 Suited to larger energy longer storage time 	compress H2
• Suited to larger energy, longer storage time	250 bar
applications	500 bar
 Scalable – like a flow battery 	liq H2
 Geographically agnostic 	
 Different scenarios envisaged 	cryo comp H2
 Stationary (backup nower industrial) 	
• Stationary (backup power, industrial)	МСН
• Mobile (bus, truck, lerry)	NEC
 Used and regenerated onsite (seasonal storage) 	DBT
Transported to and from a central regeneration	NH3
facility (regional fuel depot)	EtOH/EtOAc
 More complex - require additional equipment 	
Reactors separators numps	DME(aq)
	MeOH(aq)
Can be solid or liquid	H ₂ CO ₂ (aq)
 Sorbents or chemical compounds 	KHCO ₂ (aq)
 Not simply compressed or liquid H₂ 	
	LaNi5
	AIH3

kg H ₂ /m ³
18
30
70
87
-
47
54
56
128
35
60
150
53
30
118
37

Context of energy storage demand – days and MWhs

Advantages

- Liquids to take advantage of infrastructure •
- By the numbers generic H2 carrier •
- 50 kg H₂/meter³ (20 kWh/kg H₂)
- 1 meter³ ~ 1 MWh
- ambient temperature and pressure
- stability years •
- Challenges
 - Round trip efficiency (< 0.7×0.6) •
 - Setting general targets for multiply applications

- Industrial entities •
 - Chiyoda Japan
 - Hydrogenious Germany
 - Hynertech China
 - HydroSil France •
- Government entities •
 - US Department of Energy Hydrogen Fuel Cell Technology • Office – HyMARC – Hydrogen Materials Advanced Research Consortium – an Energy Materials Network

Major R&D Challenges – TBD by experiment, computation and modeling

- Known knowns things we know we need to know
 - Gravimetric and volumetric density of material
 - Thermodynamic properties of material "T1bar" (do we want T 95% conversion?)
 - Physiochemical properties (mp, bp, vp, viscosity, solubility)
 - Energy and power requirements for use case
 - Storage duration and duty cycle for use case
 - Optimum thermodynamic properties $-\Delta H / \Delta S$ plot
 - Catalysis: reactivity and selectivity; stability Weisz criteria

• Known unknowns – things we know we need to know but don't know yet

- Round trip efficiency how far are we from (0.7 x 0.6)?
- How big is the reactor
- What are the components required for the reactor, purification
- What is the OPEX and CAPEX?
- What is the most expensive component?
- Can we make a H_2 carrier without H_2 (electrochemical reduction)
- If a catalyst is 'fast' enough can we make it cheaper, more stable?
- Buffering start up shut down, transients average rates and peak rates
- Unknown knowns things we know we should know but are currently unaware of knowing
 - What are the catalysts used today?
 - Are the catalysts sufficient? TOF, selectivity, lifetime, \$
- Unknown unknowns things we don't know that we need to know

