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Modeling and Analysis of DC Microgrids as
Stochastic Hybrid Systems

Jacob A. Mueller, Member, IEEE and Jonathan W. Kimball, Senior Member, IEEE

Abstract—This study proposes a method of predicting the
influence of random load behavior on the dynamics of dc
microgrids and distribution systems. This is accomplished by
combining stochastic load models and deterministic microgrid
models. Together, these elements constitute a stochastic hybrid
system. The resulting model enables straightforward calculation
of dynamic state moments, which are used to assess the proba-
bility of desirable operating conditions. Specific consideration is
given to systems based on the dual active bridge (DAB) topology.
Bounds are derived for the probability of zero voltage switching
(ZVS) in DAB converters. A simple example is presented to
demonstrate how these bounds may be used to improve ZVS
performance as an optimization problem. Predictions of state
moment dynamics and ZVS probability assessments are verified
through comparisons to Monte Carlo simulations.

Index Terms—Stochastic hybrid system, dual active bridge
converter, generalized average model, zero voltage switching

I. INTRODUCTION

Microgrids have rapidly emerged as a solution for improv-
ing the flexibility and resiliency of power delivery systems.
Microgrids provide a framework for integrating distributed
resources in close proximity to the loads they serve. When
equipped with energy storage resources, a microgrid may
operate as an autonomous island decoupled from the bulk
power system. Because microgrids do not, in general, require
a connection to a traditional utility system, they are free to
consider alternative means of power distribution [1]. An im-
portant subset of microgrids distribute power as DC instead of
traditional synchronous AC. A key benefit of DC distribution
is the elimination of bulky 60 Hz transformers, which reduces
the weight and volume of power conversion equipment. As
a result, DC distribution is an attractive solution for mobile
platforms such as spacecraft, more-electric aircraft, automo-
biles, and electric warships [2]–[4]. Even applications that are
not subject to stringent weight and volume constraints may
benefit from DC distribution due to the increasing prevelance
of DC-native generation sources, loads, and energy storage
resources.

Like all power delivery systems, the operating state of
a DC microgrid is heavily influenced by the operation of
system loads. Practical loads, which are time-varying and
nondeterministic, introduce uncertainty in the dynamic behav-
ior of the microgrid system. For some analysis and design
objectives, dealing with the complexity of stochastic load
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influences is not necessary. Stability analyses, for example,
rarely include stochastic behavior. A typical approach to small-
signal stability is to identify a steady-state operating point for
a deterministic loading condition, linearize a system model
around that operating point, and inspect the locations of the
linearized model’s eigenvalues [5]. The analysis relies on an
approximation of loads as deterministic and constant in time,
and while real-world loads fit neither of these conditions, this
approach is an effective tool for evaluating the stability of both
microgrids and bulk power systems.

However, deterministic models are unable to provide in-
sights into the performance and reliability of a system over
time. These sorts of assessments require quantitative descrip-
tions of the distribution of system operating conditions over a
given time range [6]. The performance of a converter depends
on its operating point, and there are often operating ranges
which are more desirable than others. For example, soft-
switching significantly improves converter efficiency and reli-
ability, but is typically only possible for a subset of operating
conditions. It is preferable to either operate the converter in
its soft-switching range as often as possible, or to design
the soft-switching range around the typical system operating
conditions. Either approach requires quantitative descriptions
of expected operating conditions as a function of the behavior
of loads within the system. The present study focuses on
developing modeling tools to generate these descriptions.

The challenge of predicting expected operating conditions
as a function of uncertain load influences essentially involves
two tasks: (1) building stochastic models of load behavior and
(2) integrating those models into deterministic dynamic system
models. Established methods for both of these tasks exist in
bulk power system analysis. Load behavior in a traditional
power system is commonly approximated using Gaussian
processes [7], [8]. By integrating Gaussian load processes
as inputs to linearized power system models (such as those
employed for small-signal stability analysis), distributions of
power system states can be calculated directly [9]. The justifi-
cations for using Gaussian load approximations and linearized
system models are both based in system scale [10]. Since the
number of individual loads in a traditional power system is
typically very high, Gaussian system-level approximations are
justified by the central limit theorem. Similarly, each individual
load constitutes only a small fraction of the aggregate system
load, so changes in individual load behavior are generally
small enough to be considered a small-signal disturbance.
However, as the scale of the system decreases, the impact
of an individual load device becomes more significant with
respect to the total load. As a result, Gaussian approximations
and linearized dynamic models become less accurate [11].
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The breakdown of Gaussian load approximations is prob-
lematic for microgrids. Microgrids are, by definition, smaller
in scale than traditional power systems. This is especially true
for isolated microgrids on mobile platforms. System-level load
behavior in a microgrid cannot be accurately approximated
with Gaussian distributions, and a transient load change cannot
safely be considered a small-signal disturbance. Instead, load
behavior is characterized by large-signal transient events, or
“jumps,” which occur at random intervals. This means that
neither the load modeling methods nor the deterministic dy-
namic models from conventional power system analysis are
applicable. A suitable approach to predicting expected system
operating conditions must be compatible with discrete jump
events representing large-signal load changes and nonlinear
dynamic system models.

The first task is to accurately represent the large-signal jump
behavior of practical loads. Methods of modeling stochastic
load behavior without Gaussian process approximations have
been proposed in the field of nonintrusive load monitoring
(NILM). The objective of NILM is to obtain a detailed
description of the behavior of devices in a system without
monitoring each device individually [12], [13]. This is ac-
complished using probabilistic models of device behavior. A
successful subset of NILM methods employs hidden Markov
models (HMMs) to describe devices [14]–[17]. HMM-based
load models transition through a discrete set of states, or
modes, each corresponding to a stationary distribution of
power consumption. Transitions between modes enable these
models to represent the large-signal jump events characteristic
of practical loads. An additional advantage of HMMs is that
they can be trained to represent individual device behavior and
then combined as needed to construct models of composite
multi-device loads. This is particularly useful when modeling
multiple devices at different locations in a distribution system.
The methods for constructing and manipulating device models
proposed in [17] are the basis for the load representation in
this study.

The next task, which is much more technically challenging,
is to predict the influence of stochastic behavior on system
parameters. Previous research in this area has primarily fallen
into two categories. The first category is essentially data-
driven, using copious data to develop either a model of the
stochastic behavior to use for reliability predictions [18] or
to gain insight into the expected system behavior for deter-
ministic design [19]. Evaluation is primarily performed with
Monte Carlo simulations. For example, in [19], solar power
data was analyzed in the frequency domain. After designing
a (deterministic) filter, system behavior was evaluated with a
combination of actual data and Monte Carlo methods. The
other category uses polynomial chaos [20]–[22], a formalism
that transforms stochastic processes with a set of orthogonal
bases, analogous to a Fourier series expansion for periodic
signals. Polynomial chaos is an excellent approach for com-
ponent tolerance studies and has also been applied to input
uncertainty. Most applications in the power electronics domain
have focused on circuit-oriented models, rather than state-
space-oriented models, and have not addressed discrete-event
systems.

This study proposes a method of obtaining appropriate
descriptions by modeling converter and load behavior as a
stochastic hybrid system (SHS). The SHS framework is a
powerful modeling tool that includes continuous dynamics,
instantaneous events, and a variety of random effects [23].
The framework is challenging due to its sheer generality but
offers powerful machinery for system analysis. In particular,
it is possible to describe the evolution of moments of dynamic
states as a system of ordinary differential equations (ODEs).
In [24], a conventional power system was modeled as an
SHS. A similar approach was employed in [25] to analyze the
stability of ac microgrid systems. The procedure for applying
the SHS framework here is heavily influenced by the methods
in [24], though the treatment of load behavior is different.

The present work extends [26] and applies the generic
SHS framework to a Markov jump linear system (MJLS) that
results from linearizing a nonlinear system around a set of
operating points represented by the modes of a continuous-
time Markov chain. Similar to [24], this SHS is used to
determine the dynamics of the moments of the states and
modes. A mathematical framework and accompanying algo-
rithm are then derived to convert the dynamical equations
into conventional state-space matrix representation. This is the
primary contribution of the paper.

The proposed modeling approach is applicable regardless of
system structure or the topologies of its constituent converters.
To demonstrate the functionality of the approach and verify
its accuracy, the algorithm is applied to a 7-bus dc microgrid
system containing 5 dual active bridge (DAB) converters and
multiple loads. The stochastic, time-varying behavior of the
system’s loads are described by Markov chains. The SHS
model is used to analyze the impact of the loads’ collective
random influence on system dynamics by computing low order
moments of important dynamic state variables.

The second contribution is a method of assessing the
probability of soft-switching for each of the converters in the
7-bus system. The method leverages the state variable moment
calculations enabled by the proposed system modeling ap-
proach. These moments are used to determine the probability
of operating in the zero voltage switching (ZVS) regime.
The system-level modeling algorithms make it possible to
calculate moments with high computational efficiency. As
a result, the moment calculations are easily integrated into
iterative optimization methods, where alternative approaches
to characterizing expected system behavior (e.g. Monte Carlo
simulation) would be too slow and cumbersome to use. To
illustrate this, an optimization routine is constructed around
the ZVS prediction method and used to improve soft-switching
performance by varying controller gain parameters. The ZVS
prediction and optimization procedure is presented in the
context of the 7-bus system and the DAB topology, but its
true value is as an exemplary embodiment of the SHS model’s
applications to practical design challenges. The intent of this
contribution is not to provide a method for improving ZVS
in DAB-based dc microgrids, but rather to the illustrate how
SHS model outputs may be used to improve specific system
and converter performance attributes.

The paper is structured as follows. Section II reviews
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relevant aspects of the SHS framework. The conversion of the
SHS model to state-space matrices is described in Section III.
The algorithms described in Section III are then applied
to a 7-bus system. The key elements of this system and
their respective mathematical representations are discussed in
Section IV. The 7-bus system and its dynamic model are
introduced in Section IV-A. Section IV-B describes the load
models and the process of incorporating their influence into
the SHS model. The method of predicting the probability of
ZVS is discussed in Section IV-C. Verification experiments
are described in Section V, including the demonstration of
soft-switching performance improvement as a gain-tuning op-
timization problem.

II. BACKGROUND

The SHS framework is extremely general, and only a limited
subset of its descriptive capability is used in this study. This
section reviews fundamentals of the SHS approach that are
relevant to the proposed method. A more comprehensive
review of SHS formalisms and their application to similar
systems can be found in [23], [24], [27].

Consider a dynamic model with the form

ẋ = f(x, y, u) (1)
0 = g(x, y, u), (2)

where x, y, and u are vectors denoting dynamic states,
algebraic states, and inputs, respectively. For a given operating
point, there is a corresponding affine model defined by

ẋ = Ax+Bu+ C (3)
y = Dx+ Eu+ F. (4)

The affine terms C and F allow the use of the large-signal
state x and output y, rather than small-signal perturbations.

Let Q(t) be a homogenous continuous-time Markov chain
(CTMC) that transitions between a set of discrete modes S
according to a transition rate matrix Λ. At some time t, the
occupation probabilities for each mode s ∈ S are denoted
πs(t). Defining the occupation probability row vector π =
[π1, · · · , π|S|],

π̇ = πΛ (5)

Each mode s corresponds to a set of inputs us. The SHS model
consists of a family of affine models linearized at each us. The
model is

Ẋ(t) = AsX(t) +Bsus + Cs, (6)

where X(t) is a stochastic process that describes the con-
tinuous dynamic state. The transition rate matrix Λ fully
determines mode transitions. That is, mode transitions are not
explicitly time or state-dependent. A reset map defines how
states and modes change on each transition. The reset map is
denoted φij , where i, j ∈ S are the modes before and after
the transition, respectively. In this case, the function of the
reset map is to avoid any discontinuities in the dynamic state.
Therefore, φij is defined as

φij(q, x) = (j, x). (7)

This definition agrees with [24], including the extra input q
(denoting the value of random variable Q) that is always equal
to i when the reset map activates.

The SHS framework enables analysis of the behavior of
probabilistic moments of the state X(t) directly. Using the
extended generator for the SHS, a set of ordinary differential
equations may be found for the moments. The extended
generator is

(Lψ)(q, x) =
∂

∂x
ψ(q, x) · (Aqx+Bquq + Cq)

+
∑
i,j∈S

λij ((ψ(φij(q, x))− ψ(q, x))) , (8)

where ψ(q, x) is a suitably smooth test function, each λij is
an element of matrix Λ, and L represents a Lie derivative.
For the generator form shown in (8), which assumes that
inputs are constant between mode transitions, ψ(q, x) must
be bounded and continuously differentiable with respect to
x. More stringent requirements apply when the inputs are
assumed to be stochastic. If inputs contain white noise compo-
nents, φ(q, x) must be twice continuously differentiable with
respect to x [23].

The generator becomes useful in Dynkin’s formula, which
describes the evolution of the expected value of the test
function in terms of the underlying random variables.

d

dt
E [ψ(Q(t), X(t))] = E [(Lψ)(Q(t), X(t))] (9)

To extract conditional moments of X(t), the test function is
defined as

ψ
(m)
i (q, x) = δi(q)x

(m), (10)

where δi(q) is the Kronecker delta function and m is a vector
of moment orders [24]. For a system with N dynamic states,
m is an N -element row vector and x(m) defined as

x(m) =

N∏
k=1

xmk

k . (11)

For a given mode i, the expected value of ψ(q, x) is equal
to the conditional moments of X(t).

E
[
ψ
(m)
i (q, x)

]
= E

[
X(m)(t)

∣∣Q(t) = i
]
πi(t) (12)

The unconditional moments of X(t) may then be computed
by the law of total expectation.

E
[
X(m)(t)

]
=
∑
i∈S

E
[
ψ
(m)
i (q, x)

]
(13)

Therefore, the evolution of the dynamic state moments is
described by the set of ODEs corresponding to time derivatives
of E

[
ψ
(m)
i (q, x)

]
. To simplify notation, let the conditional

moments be denoted by

µ
(m)
i (t) = E

[
ψ
(m)
i (q, x)

]
(14)

Then according to (9), the ODEs of interest are

µ̇
(m)
i (t) = E

[
(Lψ

(m)
i )(Q(t), X(t))

]
(15)
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Conditional moments of algebraic states may be computed
from the conditional moments of X(t). Let conditional mo-
ments of the process Y (t) be denoted ζ(m)(t). Then the
conditional moments are

ζ
(m)
i (t) = E

[
(DiX(t) + Eiui + Fi)

(m)
∣∣Q(t) = i

]
πi(t)

(16)
Much of the practical difficulty in applying the SHS frame-

work lies in computing usable expressions for the right-hand
sides of (15) and (16). An expression for the right-hand side
of (15) is given below, slightly modified from the form given
in [24].

µ̇
(m)
i (t) =

N∑
p=1

mp

(
N∑
r=1

a(i)prµ
(m−ep+er)
i (t) + µ

(m−ep)
i (t)vi,p

)
+
∑
j∈S−

i

λjiµ
(m)
j (t)−

∑
k∈S+

i

λikµ
(m)
i (t) (17)

In this equation, a(i)pr is the pth row, rth column element of
Ai, vi,p is the pth element of vector vi = Biui +Ci, and S−i
and S+i denote the sets of modes that transition into and out
of mode i, respectively. Vectors ep and er are elementary row
vectors, that is, row vectors of all zeros except that the pth or
rth element is 1.

III. SHS MICROGRID MODEL

A. Matrix Formulation of SHS Model

Let µ|n|i (t) denote the set of all nth moments of X(t)

conditional on mode i. That is, µ|n|i (t) is a column vector of
all moments µ(m)

i , as defined in (14), for which ‖m‖1 = n.
For proper ordering with respect to the states,

µ
|n|
i (t) = E

[
X⊗n(t)|Q(t) = i

]
πi(t), (18)

where ⊗ is the Kronecker product and X⊗n is a Kronecker
power, that is, X ⊗X · · · ⊗X with n factors. By convention,
X⊗0 = 1. In this way, the 0th order moments are the mode
occupation probabilities:

µ
|0|
i (t) = E

[
1

∣∣∣∣Q(t) = i

]
πi(t) = πi(t). (19)

First and second order moments are

µ
|1|
i (t) = E

[
X(t)

∣∣∣∣Q(t) = i

]
πi(t) (20)

µ
|2|
i (t) = E

[
X(t)⊗X(t)

∣∣Q(t) = i
]
πi(t). (21)

Similarly for higher-order moments if needed. To represent
moments for all modes, let vector µ|n|(t) be defined as

µ|n|(t) =


µ
|n|
1 (t)

...
µ
|n|
M (t)

 . (22)

In this way, µ|0|(t) ∈ RM×1 contains mode occupation
probabilities (µ|0| = πT ), µ|1|(t) ∈ RNM×1 contains all
first order moments, µ|2|(t) ∈ RN2M×1, contains all second
order moments, and so on.

With this construction, many redundant terms are included.
For a system with N dynamic states, the number of unique
nth order moments is

Nu(n) =

(
N + n− 1

n

)
. (23)

Consider two elements of X(t), Xk and X`,
k, ` ∈ {1, . . . , N}, which are both scalars. As constructed,
µ|2| will include both E[Xk(t)X`(t)] and E[X`(t)Xk(t)].
These scalar products are actually identical, and so
must be eliminated. However, the construction process
is straightforward, as is the set of matrix operations needed
to eliminate redundancies. The vectors of unique moments
are denoted µ̂

|n|
i (t). In the present study, this difference in

notation is only necessary for the second order moments,
since µ̂|n|i (t) = µ

|n|
i (t) for n < 2.

For the SHS formulation used in this study, moment dy-
namic equations depend only on moments of equal or lower
order, avoiding the need for moment-closure methods [24]. In
fact, the dynamics of moments of order n are only directly
dependent on moments of order n and n − 1, as is clear
from (17). For a given moment characterized by m, µ̇(m)

i (t)

depends on µ(m−ep+er)
i (t), µ(m−ep)

i (t), µ(m)
i (t), and µ(m)

j (t)
for other modes j ∈ S. Recall that the order of moment
µ
(m)
i (t) is equal to the one-norm of m. Trivially, µ(m)

i (t) and
µ
(m)
j (t) have the same order. If the order of µ(m)

i (t) is n, then
since ep and er are unit vectors, the orders of µ(m−ep+er)

i (t)

and µ(m−ep)
i (t) must be n and n− 1, respectively.

Consequently, it is possible to express the system of ODEs
for nth order moments as

µ̇|n|(t) = G(n)µ|n|(t) +H(n)µ|n−1|(t) (24)

Matrices G(n) and H(n) follow from (17), but provide a more
manageable structure to the definition of the SHS model.

Simplified expressions for G(n) and H(n) are given here
for low-order moments. The 0th order moments are the mode
occupation probabilities of the CTMC. Therefore G(0) = ΛT

and H(0) = 0, where the transpose is due to the fact µ|0|(t)
is a column vector. For first and second order moments, both
G(n) and H(n) may be constructed primarily as block diagonal
combinations of submatrices for each mode:

G(n) =


G

(n)
1 0 · · · 0

0 G
(n)
2 · · · 0

...
...

. . .
...

0 0 · · · G
(n)
M

+
(
ΛT ⊗ I(Nn)

)
(25)

H(n) =


H

(n)
1 0 · · · 0

0 H
(n)
2 · · · 0

...
...

. . .
...

0 0 · · · H
(n)
M ,

 (26)

where I(Nn) is the Nn-dimensional identity matrix. In the
case of first order moments, the submatrices for each mode
are

G
(1)
i = Ai (27)
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Fig. 1. Example of transformation matrix Wm for a 3-state system.

H
(1)
i = vi. (28)

For second-order moments, the submatrices are calculated
using a transformation matrix, Wm, which is constant for all
modes.

G
(2)
i = Wm (I(N)⊗Ai) (29)

H
(2)
i = Wm (I(N)⊗ vi) . (30)

The role of Wm is to describe the structure of the moments.
Each row of Wm corresponds to the dynamic equation for a
particular conditional second order moment. The elements of
Wm correspond to the values of the coefficient mp in (17).
Since Wm describes second order moments, all rows and
columns sum to 2. Note that a transformation appears in the
equations for second order moments, but not in equations for
first-order moments (i.e. (27) and (28)). The same connection
to values of mp in (17) applies to these equations, but if a
transformation was defined it would simply be the identity
matrix.

The sparsity pattern of Wm for a simple system with N = 3
states is shown in Fig. 1. To illustrate how Wm corresponds to
moment relationships, conditional second order moments are
shown on the horizontal and vertical axes. For legibility, time
dependence and conditioning are omitted from the notation
used in the figure.

Matrix Wm represents relationships between second-order
moments. Since moments E[X1(t)X2(t)|Q(t) = q] and
E[X2(t)X1(t)|Q(t) = q] are the same, the equations that
govern their dynamics must both depend on exactly the
same two moments. Furthermore, moments whose dynamics
depend on E[X1(t)X2(t)|Q(t) = q] must also depend on
E[X2(t)X1(t)|Q(t) = q]. Fig. 1 shows that this is the case.

A convenient way to decompose the structure of Wm is
to separate each moment’s dependencies into self-dependence
and dependence on its equivalent moment. This separation
may be accomplished as

Wm = I(N2) +Ws +Wc, (31)

where the identity matrix describes each moment’s self-
dependence, Ws adds another self-dependence for moments
of the form E[Xi(t)Xi(t)|Q(t) = q], and Wc describes
dependence on the equivalent moment (that is, the equivalence
of E[Xi(t)Xj(t)|Q(t) = q] and E[Xj(t)Xi(t)|Q(t) = q] for
i 6= j). The decomposition is shown graphically in Fig. 2. The
nonzero elements Ws and Wc are:

Ws

(
N(i− 1) + i,N(i− 1) + i

)
= 1,

∀i ∈ {1, · · · , N} (32)

Wc

(
N(i− 1) + j,N(j − 1) + i

)
= 1,

∀i, j ∈ {1, · · · , N}, i 6= j (33)

B. Elimination of Redundant Second Order Moments

The equivalent moments contained in µ
|2|
i (t) decrease the

computational efficiency of the SHS model. Moreover, ma-
trix G

(2)
i will be rank deficient unless redundant moments

are eliminated, meaning stationary moment solutions cannot
be calculated through linear equations. However, redundant
moments may be eliminated from the system using the trans-
formation matrix Wm and its decomposed forms Wc and Ws.
Redundant moments are eliminated at the submatrix level,
such that the reduced system is constructed through the same
block-diagonal procedure. Considering only unique second
order moments, the reduced system is

˙̂µ|2|(t) = Ĝ(2)µ̂|2|(t) + Ĥ(2)µ|1|(t) (34)

Ĝ(2) =


Ĝ

(2)
1 0 · · · 0

0 Ĝ
(2)
2 · · · 0

...
...

. . .
...

0 0 · · · Ĝ
(2)
M

+
(
ΛT ⊗ I(Nu(2))

)
(35)

Ĥ(2) =


Ĥ

(2)
1 0 · · · 0

0 Ĥ
(2)
2 · · · 0

...
...

. . .
...

0 0 · · · Ĥ
(2)
M

 . (36)

The process of eliminating redundant moments consists of
two linear transformations. First, rows of G(2)

i that describe
dynamics of redundant moments must be eliminated. Second,
columns of G(2)

i corresponding to dependence on equivalent
moments must be summed together. One additional matrix,
denoted R, describes these transformations. Let µ̂|2|i (t) =

Rµ
|2|
i (t), where R eliminates all redundant moments from

µ
|2|
i (t). Matrix R is easily specified from the locations of

unique moments in µ|2|i (t). The indices of the unique moments
are an ordered set of Nu(2) integers, defined by:

Su =

N⋃
i=1

{(i− 1)N + i, · · · , iN} . (37)

Then the Nu(2) rows of R are the rows of the N2 identity
matrix that correspond to unique moments: if j is the ith

element of Su, the ith row of R is the jth row of I(N2).



6

Fig. 2. Decomposition of Wm into Ws, Wc, and I(N2) for a 3-state system.

In the case of the simplified 3-moment system, the indices
of unique moments are:

Su = {1, 2, 3} ∪ {5, 6} ∪ {7} . (38)

For this system, the 4th element of Su is 5. Therefore, the 4th

row, 5th column element of R is equal to 1. This is shown
graphically in Fig. 3.

Matrix R is exactly the transformation needed to eliminate
redundant moment equations from the model. Premultiplying
G

(2)
i and H

(2)
i by R eliminates rows that describe dynamics

of redundant moments. This is all that is needed to determine
Ĥ

(2)
i from H

(2)
i . To complete the definition of Ĝ(2)

i , columns
of G(2)

i that correspond to dependence on equivalent moments
must be summed. Relationships between equivalent moments
are contained in Wm. The relevant information is in Wc

and I(N2); the additional self-dependence described by Ws

is irrelevant to moment equivalence. Postmultiplying G
(2)
i

by
(
Wc + I(N2)

)T
sums the necessary columns. The full

transformation is

Ĝ
(2)
i = RG

(2)
i

[
R(Wc + I(N2))

]T
(39)

Ĥ
(2)
i = RH

(2)
i . (40)

In comparison to the submatrices in (29) and (30), these
definitions produce a second order system with significantly
reduced size. More importantly, matrix Ĝ(2) will always have
full rank, making it possible to solve for stationary moments.

C. Efficient Algorithm to Determine Second-Order Moment
Dynamics

A more efficient alternative to (39) and (40) is to directly
calculate Ĝ(2)

i and Ĥ(2)
i , rather than reducing them from G

(2)
i

and H(2)
i . Define two new transformations, Wx and Wy , as

Wx = R
(
Wc + I(N2)

)
(41)

Wy = RWs. (42)

Sparsity patterns for these matrices are shown in Fig. 4.
Combining (29), (30), and the various transformation matrices,

the reduced subsystem matrices may be calculated directly
from Wx, Wy , Ai, and vi as

Ĝ
(2)
i = (Wx +Wy) (I(N)⊗Ai)

(
WT
x

)
(43)

Ĥ
(2)
i = (Wx +Wy) (I(N)⊗ vi) . (44)

The definitions in (41) and (42) are only given for clarity
of derivation. In practice, Wx and Wy are more efficiently
constructed with the simple algorithm in Fig. 5. Both are
highly sparse, so direct construction is more efficient than mul-
tiplication. Wx and Wy are the only transformations required
to calculate the reduced subsystem matrices, so the ability to
specify them directly is a significant advantage. After Wx and
Wy have been constructed according to the pseudocode in
Fig. 5, the final SHS model may be formed from (43)-(44)
without calculating R, Wm, Ws, or Wc.

D. Final Model and Steady-State Moments

After reducing the second order system, the final model for
low order moments is

µ̇|0|(t) = G(0)µ|0|(t) (45)

µ̇|1|(t) = G(1)µ|1|(t) +H(1)µ|0|(t) (46)
˙̂µ|2|(t) = Ĝ(2)µ̂|2|(t) + Ĥ(2)µ|1|(t) (47)

where G(0) = ΛT and G(1), H(1), Ĝ(2), and Ĥ(2) are specified
by submatrices in (27), (28), (43), and (44), respectively.
Noting that µ̂|n|(t) = µ̂|n|(t), Ĝ(n) = G(n), and Ĥ(n) = H(n)

for n = 0 and n = 1, the general form of an nth order SHS
model may be expressed as

˙̂µ|n|(t) = Ĝ(n)µ̂|n|(t) + Ĥ(n)µ̂|n−1|(t) (48)

Ĝ(n) =


Ĝ

(n)
1 0 · · · 0

0 Ĝ
(n)
2 · · · 0

...
...

. . .
...

0 0 · · · Ĝ
(n)
M


+
(
ΛT ⊗ I(Nu(n))

)
(49)
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Fig. 3. Specification of R from indicies of unique moments.

Fig. 4. Sparsity pattern of final transformation matrices used to calculate reduced subsystem matrices.

1: Wx ← [0]Nu(2),N2 , Wy ← [0]Nu(2),N2

2: k ← 1
3: for i← 1, · · · , N do
4: Wy(k,N(i− 1) + i)← 1
5: for j ← i, · · · , N do
6: Wx(k,N(i− 1) + j)← 1
7: Wx(k,N(j − 1) + i)← 1
8: k ← k + 1
9: end for

10: end for

Fig. 5. Pseudocode for construction of Wx and Wy .

Ĥ(n) =


Ĥ

(n)
1 0 · · · 0

0 Ĥ
(n)
2 · · · 0

...
...

. . .
...

0 0 · · · Ĥ
(n)
M

 . (50)

Submatrices Ĝ(n)
i and Ĥ(n)

i are

Ĝ
(n)
i = R(n)W (n)

m

(
I(Nn−1)⊗Ai

)[
R(n)

(
W (n)
c + I(Nn)

)]
(51)

Ĥ
(n)
i = R(n)W (n)

m

(
I(Nn−1)⊗ vi

)[
R(n−1)

(
W (n−1)
c + I(Nn−1)

)]
(52)

where R(n), W (n)
m , and W (n)

c are transformation matrices for
the nth order moments.

This system is suitable for predicting moment dynamics. In
some cases, however, it may be desirable to simply compute
the moments for steady-state behavior. Let tF represent some
final time at which the stationary distribution has been reached,
and the left-hand side of (48) is 0. The 0th moments are
the stationary distribution of the CTMC, or π(tF ). Therefore,
µ|0|(tF ) may be determined by solving 0 = ΛTµ|0|(tF ) with
the constraint

M∑
i=1

µ
|0|
i (tF ) = 1. (53)
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Fig. 6. 7-Bus Test System.

The rest of the stationary moments are then:

µ̂|n|(tF ) =
(
Ĝ(n)

)−1 (
−Ĥ(1)µ̂|n−1|(tF )

)
. (54)

IV. APPLICATION TO DC MICROGRIDS BASED ON DAB
CONVERTERS

A. Dynamic DC Microgrid Model

The general SHS framework described in Section III is
usable for a wide range of systems, as long as the switched
affine model given in (3)-(7) is appropriately accurate. In the
present work, the target application is a dc microgrid, which
in general consists of DC-DC converters, sources, lines, and
loads.

While the SHS model construction algorithm described
in Section III is applicable to a diverse range of systems,
it is necessary to select a specific system for the purposes
of demonstration and validation. The SHS models are built
on top of deterministic dynamic models, which are specific
to the systems under consideration. A full derivation of the
deterministic dynamic model of the system used for validation
experiments is neither necessary nor particularly valuable to
the development of the proposed modeling method. However,
detailed knowledge of this model is essential for reproducing
the results of verification experiments. To manage scope
without sacrificing reproducibility, the 7-bus system shown in
Fig. 6 is chosen as the system under consideration. A detailed
model of this exact system was derived in [28].

In addition to detailing the specific model under consid-
eration in this study, reference [28] also describes a general
an approach to constructing system-level dynamic models of
multi-converter systems. The process is similar to how large
power system models are created from individual synchronous
generator models and impedance networks. The focus of [28]
is combining averaged models of DAB converters, but the
methods apply equally to other DC-DC converter topologies
as well. A similar approach is described in [29] for multi-
converter systems with specific treatment of inverters and
buck, boost, and buck-boost DC-DC converters.

B. Load Models and System Inputs

The deterministic dynamic model of the microgrid system
has the standard form shown in (1) and (2). For the system
shown in Fig. 6, the input vector u includes the source
voltage v1in, load currents i3L, i4L, and i5L, and voltage reference
setpoints for each of the converters in the system. These inputs
are time-varying, and all are potential sources of uncertainty.
That is, each input could be a stochastic process. For the
purposes of this study, both the source voltage and the voltage

0.5A 1A 2A 4A3A

1.25A 1.5A 2A 3A2A

6A4A

DAB 3

Loads

DAB 4

Loads

DAB 5

Loads

0.98 0.95 0.9 0.95 0.9

0.02 0.05

0.05
0.05

0.05

0.1

0.9 0.8 0.7 0.95 0.9

0.1 0.2

0.25
0.05

0.05

0.1

0.5 0.99

0.5

0.01

Fig. 7. Markov chains for loads in 7-bus system experiments.

references are constant, and only the load currents behave
randomly. To use the methods described in Section III, the
combined behavior of the loads must be described by a CTMC
and the nonlinear system model must be converted into a
switched affine model. Each mode of the CTMC corresponds
to one possible permutation of load current inputs. The affine
model is generated by linearizing the system around the
steady-state response to load current values for each mode of
the CTMC. The CTMC is constructed from individual models
of load devices.

Individual load models are discrete-time Markov chains.
The DTMC for a load device may either be specified directly
based on expert knowledge of the device’s behavior or, more
commonly, created from empirical measurements. This process
is referred to as “training” the model. Load device models
may be visualized as finite state machines, where each state
corresponds to a different value of current draw. This is shown
in 7 for the 7-bus system. An individual converter may serve
multiple load devices. For instance, in 7, the load for DAB 3
consists of two devices. The device on the left has 3 states;
the device on the right has 2 states.

The DTMC for each individual load i is defined by a
set of modes of size Mi, mode transition probability matrix
Pi ∈ RMi×Mi , possible output values ILi ∈ R1×Mi , and a
sample rate TS . At each sample time, the probability of the
ith device transitioning from mode j to mode k is element
pi,jk of Pi. Each mode j corresponds to a single value of load
current ILi,j . The DTMC is trained using maximum likelihood
estimation according to the procedure described in [17].

To model the complete system, a single, unified DTMC that
represents all of the loads is needed. The complete system will
have a set of modes M , transition matrix P , and load currents
IL (without a device-specific subscript). The composite model
is constructed recursively. When one load is included, M =
M1, P = P1, and IL = IL1. To add each subsequent device,
set:

P ← Pi ⊗ P (55)
IL ← ILi ⊗ 1(M) + 1(Mi)⊗ IL (56)

M ←MMi (57)
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where 1(M) is a column vector of M elements all equal to 1.
This process is a slight modification of the process described
in [17].

For the case of a single load, each mode corresponds to a
scalar value of current (that is, mode j corresponds to IL,j).
For the general case, each mode corresponds to a vector of
load currents. For example, the 7-bus system shown in Fig. 6
has three load buses, so each mode corresponds to a 1 × 3
vector. A given load will typically connect to only one load
bus, so only one element of the row vector will be non-zero.
If load i has two modes, then ILi ∈ R2×3. The combination
process increases the number of rows of IL but not the number
of columns, so that for the combined five loads illustrated in
Fig. 7, IL ∈ R72×3.

After executing (55)-(57) for all of the loads, the composite
model will describe a DTMC with M modes and transition
probability matrix P . In general, a DTMC may not be directly
converted to a CTMC. However, knowing that the DTMC
was created from uniformly sampled continuous-time signals,
and assuming that the sample rate was sufficiently high, the
CTMC may be approximated. With a sample period of Ts, the
transition rate matrix Λ has elements

λii = −1− pii
Ts

(58)

λij =
pij
Ts
, i 6= j (59)

The CTMC with state Q(t) is governed by Λ and has M
modes, each corresponding to a load current vector IL(Q, :).
These modes, and their corresponding load current vectors,
provide the information necessary to construct the switched
affine model of the microgrid system.

C. Prediction of ZVS Performance

The methods in Section III do not depend on the determin-
istic system or converter models. However, the ZVS prediction
and improvement example does require some basic description
of an individual DAB converter model.

The DAB converters in the system under consideration
are internally deterministic and modeled according to the
procedure in [30]. The converters are voltage-controlled and
serve either current source loads or other downstream convert-
ers. Single-phase-shift (SPS) modulation is used, the simplest
form, in which all four legs of the DAB switch at 50% duty
ratio, the two legs of each bridge are 180° out of phase,
and the phase shift between the two bridges is used for
control (translated into an effective duty ratio d). A simple
PI controller on the voltage is used to determine d according
to

γ̇ = ki(vref − vo) (60)
d = kp(vref − vo) + γ (61)

where kp and ki are the gains, vref is an exogenous reference,
and vo is the actual output voltage. The conditions for zero-
voltage switching (ZVS) may be expressed in terms of phase
shift and voltage gain [31]–[33]. Assuming forward power

transfer, ZVS occurs in both H-bridges when the following
inequalities are satisfied:

d ≥ 1

2
− vo

2vc
(62)

d ≥ 1

2
− vc

2vo
. (63)

where vc is the input voltage, referred across the transformer.
Since both vo and vc are strictly positive, these inequalities
may be rearranged as

2dvc + vo − vc ≥ 0 (64)
2dvo + vc − vo ≥ 0. (65)

Further, since d is a function of the controller states, these
conditions may be expressed entirely in terms of the states
and inputs of the DAB model. The resulting expressions are
denoted hd(x, u) and hu(x, u), with subscripts indicating that
they pertain to the conditions for voltage step-down and step-
up operation, respectively.

hd(x, u) , 2vc (kp(vref − vo) + γ) + vo − vc (66)

hu(x, u) , 2vo (kp(vref − vo) + γ) + vc − vo (67)

In the context of the deterministic model, ZVS operation in
a given converter may be determined by checking whether
hd(x, u) ≥ 0 and hu(x, u) ≥ 0.

The SHS framework may be used to determine the uncen-
tered moments of all of the discrete and continuous states, as
well as algebraic functions of the states. The moments may be
used to evaluate operating conditions, including the probability
of satisfying certain requirements like ZVS, that are expressed
as an algebraic function h(x, u). For simplicity, a scalar-valued
function is considered here.

For a given mode Q, the input is uq and the corresponding
steady-state operating point is xq . Near this equilibrium,

h(x, u) ≈ Dqx+ Equq + fq, (68)

where Dq and Eq are derivative vectors and fq is a constant
scalar offset.

Dq =
∂h(x, u)

∂x

∣∣∣∣
x=xq

u=uq
(69)

Eq =
∂h(x, u)

∂u

∣∣∣∣
x=xq

u=uq
(70)

fq = h(xq, uq)−Dqxq − Equq (71)

The conditional moments given by (16) may be simplified for
the scalar case. Defining ξ

(n)
i to be the conditional moments

of h(x, u) in mode i,

ξ
(n)
i (t) = rni µ

|0|
i (t) +

n∑
k=1

(
n
k

)
rn−ki D⊗ki µ

|n|
i (t), (72)

where again D⊗ki is the kth Kronecker power and ri is defined
as

ri = Eiui + fi. (73)
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The first few moments of ξ(n)i (t) are

ξ
(1)
i (t) = riµ

|0|
i (t) +Diµ

|1|
i (t) (74)

ξ
(2)
i (t) = r2i µ

|0|
i (t) + 2riDiµ

|1|
i (t) + (Di ⊗Di)µ

|2|
i (t) (75)

The second order moment can alternatively be expressed as a
function of unique second order dynamic state moments using
the transformation (41).

ξ
(2)
i (t) = r2i µ

|0|
i (t)+2riDiµ

|1|
i (t)

+ (Di ⊗Di)
(
WT
x

)
µ̂
|2|
i (t) (76)

Finally, the unconditional moments are the sum of each the
conditional moments for each mode.

E [h(x, u)n] = ξ(n)(t) =

M∑
i=1

ξ
(n)
i (t) (77)

Using the Cantelli inequality, bounds on the probability of a
condition on h(x, u) can be defined in terms of first and second
moments. For generic random variable X and constant a, the
Cantelli inequality is [34]:

P [(X − µX) ≥ a]

≤
σ2
X

σ2
X+a2

a ≥ 0

≥ 1− σ2
X

σ2
X+a2

a < 0
, (78)

where µX and σ2
X are the first and second central moments

of X . Letting a = −µX the inequality is

P [X ≥ 0]

≤
σ2
X

σ2
X+µ2

X
µX < 0

≥ 1− σ2
X

σ2
X+µ2

X
µX ≥ 0

. (79)

Applying this inequality to h(x, u), and substituting raw
uncentered moments for central moments, the upper limits and
lower limits on the probability P[h(x, u) ≥ 0] are:

P [h(x, u) ≥ 0] ≥

{
(ξ(1)(t))2

ξ(2)(t)
, ξ(1)(t) ≥ 0

0, ξ(1)(t) < 0
(80)

P [h(x, u) ≥ 0] ≤

{
1, ξ(1)(t) ≥ 0

1− (ξ(1)(t))2

ξ(2)(t)
, ξ(1)(t) < 0

(81)

These expressions are valid for hd(x, u), hu(x, u), and for
any other functions that encode operating conditions as scalar
comparisons to zero. Thus, ZVS probability may be deter-
mined from (80) and (81).

TABLE I
CONTROL AND HARDWARE PARAMETERS FOR 7-BUS SYSTEM

Parameter Value Parameter Value

C1
in, C2

in, C3
in, C1

o , C2
o , C3

o 200 µF v1ref 48 V

C4
in, C5

in, C4
o , C5

o 40 µF v2ref , v3ref 42 V

L1
t , L2

t , L3
t , L4

t , L5
t 4 µH v4ref , v5ref 36 V

f1s 40 kHz k1p / k1i 0.01 / 15
f2s 60 kHz k2p / k2i 0.01 / 10
f3s 75 kHz k3p / k3i 0.01 / 25
f4s 100 kHz k4p / k4i 0.001 / 25
f5s 90 kHz k5p / k5i 0.005 / 25

V. VERIFICATION

The verification experiments for this study consider a 7-
bus test system. The system contains 5 DAB converters
and is structured as shown in Fig. 6. All DAB converters
are closed-loop, voltage-controlled. Inputs to the system-level
model are source voltages/currents, load currents, and voltage
reference commands for voltage controllers. The converter
output terminals are indicated with a dot in Fig. 6. Hardware
and control parameters are given in Table I. Randomness is
introduced through the loads of converters 3, 4, and 5. Markov
chains that describe the individual devices in these three loads
are shown in Fig. 7.

Performance is assessed through comparisons of Monte
Carlo simulations to predictions from the SHS model. The
Monte Carlo analysis consists of 1000 independent simulations
of a period of 15 ms. In all cases, the load devices begin
mode 1 at t = 0 s, corresponding to the leftmost modes of
the Markov chains shown in Fig. 7. The system experiences
a transient response as the mode occupation probabilities
approach the stationary distribution of the CTMC. The simu-
lations use a discrete sample time of 1 µs. Unless otherwise
specified, Monte Carlo results are shown as averages over the
independent trials on a sample-by-sample basis.

A. Moment Dynamics of X(t)

The primary function of the SHS model is to accurately
predict the dynamics of moments of system state variables.
Comparisons of SHS model predictions to moment dynamics
obtained from Monte Carlo simulations are shown in Fig. 8
and Fig. 9. First moments are shown in Fig. 8 for selected
bus voltage and line current states. Second order moments are
shown in Fig. 9. The figures show that the SHS predictions
match Monte Carlo simulations both in transient response and
steady-state behavior. Similarly matching plots may be shown
for all other system state variables.

B. Moment Dynamics of ZVS Conditions

In addition to state moment dynamics, the SHS model
correctly predicts the evolution of moments of ZVS conditions.
This is shown for DAB 3 and 4 in Fig. 10. For these
converters, output voltage is always less than input voltage,
and the existence of ZVS is therefore governed by hd(x, u).
Fig. 10 shows comparisons of first and second moments of
hd(x, u) observed in Monte Carlo simulations to SHS model
predictions. These results indicate that the SHS framework
is capable of accurately predicting the moments of nonlinear
algebraic functions of system states and inputs.

The purpose of computing moments of ZVS conditions is to
obtain approximate bounds on the probability of ZVS. Fig. 11
shows ZVS probability bounds calculated using (80) and (81).
The point of comparison in this case is the relative frequency
of ZVS in Monte Carlo simulations. For each trial, a sequence
of binary variables is defined according to whether ZVS occurs
at each time sample. The average of these sequences indicates
the relative frequency of ZVS in simulation.

The results in Fig. 11 show that the tightness of the bound
varies for each converter. For instance, the upper bound shown
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in Fig. 11(a) for DAB 3 is loose in comparison to the lower
bound for DAB 5, shown in Fig. 11(c). Fig. 10 indicates
the reason for this difference. For DAB 3, the first moment
of hd(x, u) is close to zero. As a result, the tail probability
assessed in (80) and (81) is a significant fraction of the overall
distribution, and the bound given by the Cantelli inequality
is conservative. In contrast, the first moment of hd(x, u) for
DAB 5 is further from zero, and the tail probability is more
accurately assessed.

C. Improving ZVS Performance

In addition to predicting ZVS behavior, the SHS model
and ZVS condition functions may be used to improve soft-
switching performance. A simple example is given here, in
which the proportional gain of a voltage controller is adjusted
to maximize the probability of ZVS. Fig. 12 shows the ZVS
condition equation for a DAB converter in step-down opera-
tion. The x and y axes of the plot are phase shift and voltage
gain, respectively, and input voltage is assumed constant. This
is a simple way of visualizing ZVS limits: ZVS occurs in all
operating points above the limit line. Superimposed on the
plot are three steady-state operating points which correspond
to three modes of a load process. In this case, each mode is
characterized by a different voltage reference and load current.

All three operating points are above the converter’s ZVS
limit. A steady-state analysis would therefore conclude that
this converter always experiences ZVS. In practice, however,
transient conditions when transitioning between modes cause
the converter to exit the ZVS region. The SHS model is

0 5 10 15

Time (ms)

38

40

42

44

46

48

50

V
o
lt

ag
e 

(V
)

Monte Carlo SHS

(a) Bus Voltage First Moments

0 5 10 15

Time (ms)

2

3

4

5

6

C
u
rr

e
n
t 

(A
)

Monte Carlo SHS

(b) Line Current First Moments

Fig. 8. Comparison of first moment dynamics obtained from Monte Carlo
simulations to SHS model predictions.
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Fig. 9. Comparison of second moment dynamics obtained from Monte Carlo
simulations to SHS model predictions.
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obtained from
Monte Carlo simulations to SHS model predictions. Results are shown for
converters 3 and 5.

capable of identifying this behavior provides a means for
mitigating its effect. The objective in this example is to
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Fig. 11. Comparison of ZVS probability bounds from SHS to results from
Monte Carlo simulations.
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process.

maximize ZVS probability by changing controller gain. The
function to be maximized is then

F (ξ, kp) =
(ξ(1)(t))2

ξ(2)(t)
. (82)
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Fig. 13. Maximization of ZVS probability using steepest descent on propor-
tional gain parameter.

A simple iterative approach to this maximization is steepest
descent. Since the proportional gain kp is to be adjusted, the
iteration is

kp = kp + ε
∂F (ξ, kp)

∂kp
(83)

where ε is the step-size parameter, and is small (10−4 in this
example). This iteration continues until the derivative term
in (83) drops below a predetermined threshold. Fig. 13(a)
shows the change in F (ξ, kp) and kp over 600 steepest
descent iterations. The initial value of kp is 0.01; after 600
iterations the gain is kp = 0.0402. Fig. 13(b) shows results of
Monte Carlo simulations before and after tuning the controller
gain. These results clearly show the improvement in ZVS
performance due to the gain adjustments.

D. Discussion of Results

Monte Carlo simulation is the most common approach to
predicting expected microgrid behavior with uncertain load
influences. This is why Monte Carlo results are the point
of comparison for verification experiments. The advantage of
Monte Carlo analysis is simplicity. If a deterministic dynamic
model is already available, the main difficulty is specifying
parameters of the stochastic influences on the system. The
disadvantage is computational efficiency. The execution time
of a single nonlinear simulation scales with system complexity
and error tolerance. The accuracy of the final analysis depends
on number of simulations performed. If the system complexity
is too great, or if a wide variety of operating conditions must
be analyzed, accurate Monte Carlo simulations become either
too time consuming or resource intensive to be useful.
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In contrast, the SHS framework and proposed modeling
algorithms are more complicated, but once the model is
constructed the moment computations are highly efficient.
For the 7-bus system, computing all low order moments was
significantly faster than a single simulation performed as part
of the Monte Carlo analysis. This is a significant benefit
in terms of usability. More importantly, it allows the SHS
model to be applied to both analysis and design. The iterative
optimization of ZVS performance demonstrates how the SHS
model and moment calculations may be applied to a design
challenge. Because of the number of iterations involved in
the optimization, it would be impractical to use Monte Carlo
simulations for this purpose.

VI. CONCLUSION

This study presents two contributions. The first is a method
of predicting the influence of random load behavior on dc
microgrids and distribution systems. At the core of this method
is a stochastic process that represents the combined behavior
of loads throughout the system. The model that governs load
process is constructed from individual device models, which
are trained using simple parameter estimation algorithms.
Using the SHS framework, the load process is combined with
deterministic system-level models. The resulting SHS model
provides the tools necessary to analyze the effects of load
behavior on system dynamics.

The second contribution is a method of assessing the
probability of ZVS in DAB converters for a given set of load
devices. ZVS conditions are encoded as a function of dynamic
state moments. Leveraging the functionality of the SHS model,
moments of the ZVS condition functions are obtained. These
moments are used in Cantelli’s inequality to produce a set of
bounds on ZVS probability. While the proposed method of
ZVS assessment is specific to the DAB topology, it represents
an example of how desirable operating conditions may be
represented in the SHS model.
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