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Battery energy storage systems (BESS) can restore flexibility to power

systems that grow increasingly constrained from proliferation of variable re-

newable power and retirement of fossil-fuel based generation. BESS are often

controlled through an energy management system (EMS), which may not have

access to detailed, physical models developed by battery manufacturers. The

research outlined in this dissertation makes substantive contributions to quan-

tify, reduce, and ultimately account for the effects of battery system modeling

uncertainty on energy management and control. Battery models for optimal

control are reviewed in detail and metrics for their accuracy and uncertainty

are derived. Optimal parameter identification and adaptive modeling methods

are developed to reduce model uncertainty as much as possible. As some un-

certainty always remains, a method for risk-averse model predictive control for

BESS is developed to account for uncertainty and hedge control decisions to

reduce optimistic shortfall. Lastly, the potential for controller performance im-

provement to bolster the value of BESS on the grid is demonstrated. Together,

vi



more accurate, adaptive models working in conjunction with risk-adverse con-

trol algorithms dismantle the impacts of model uncertainty on energy storage

grid integration. These contributions represent an advance to the state-of-the-

art in the engineering methods for addressing molding uncertainty in BESS

control.
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Chapter 1

Introduction

This chapter outlines the research carried out in this dissertation to

understand, reduce, and control modeling uncertainty in battery energy man-

agement systems. It begins in Section 1.1. with an overview of the services

that battery energy storage provides on the grid, and how energy management

systems are critical to maximizing these services. The motivation to develop

improved solutions and the specific research objectives are explicitly stated

in Section 1.2. The original research contributions along with the resulting

publications are summarized in Section 1.3.

1.1 Background and Motivation

As power systems around the world integrate renewable energy re-

sources to reduce harmful air pollution and carbon emissions, a significant

amount of energy storage will be necessary in maintaining grid reliability and

low energy prices throughout the transition [11]. Fundamentally, large swings

between energy scarcity and oversupply are the natural result of a grid com-

posed of variable generation and load. These swings are partly addressed

through smart grid controllers that make wind and solar resources more con-

trollable and demand response programs that makes load more controllable.

Battery energy storage, which can serve as both generation and load, restores

flexibility to power systems that grow increasingly constrained from prolifera-
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tion of variable renewable power and retirement of fossil-fuel based generation.

Storage provides flexibility through a variety of grid services, each of which

counteracts variations in the availability (scarcity or oversupply) of energy by

absorbing energy when it is available or inexpensive, then supplying energy

when it would otherwise be inaccessible or costly. Changes in the availability

of energy, at specific locations in the grid, often result in changes in the value

of energy to specific economic agents (including energy storage operators). For

services where changes in locational value are foreseeable, agents can antici-

pate and react to the availability of energy based on forecasts of the supply

and demand of grid services. Grid services that meet these criteria include

energy price arbitrage, peak load management, peak supply management (in

cases where supply would otherwise be curtailed), and renewable generation

firming. When a storage operator is supplying one or more of these services,

they can integrate forecasts into proactive control decisions to improve effec-

tiveness. Grid services that do not meet these criteria, as they are not based

on predictable changes in the locational value of energy, include uninterrupt-

able power supply, frequency regulation, voltage support, spinning reserve,

and inter-area oscillation damping. For these services, proactive control is ei-

ther infeasible (cannot forecast) or trivial (a forecast would not change the

operator’s decisions).

The potential benefits of energy storage are highly sensitive to the ser-

vice life and the installation cost per effective power and energy capacities

[11,12]. Battery energy storage controllers are critical to the energy transition

because they maximize a device’s effective power and energy while increasing

service life. The energy storage controller, often a sub-process within an En-

ergy Management System (EMS), makes these decisions recursively, through
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a mathematical algorithm, while observing system states to reach a desired

condition. A variety of algorithms are available for making optimal decisions

based on forecasts of grid service demand. These algorithms are tailored to the

mathematical form of the energy storage system model and the optimization

objective. Linear models and objectives can be solved efficiently with a linear

programming (LP) algorithm while models with temporal-path-dependence

may require dynamic programming (DP) or model predictive control (MPC)

to solve. Once the optimal decision has been found and implemented by the

controller, time advances and the forecast is updated with new information.

For energy storage controllers, there are two primary sources of uncer-

tainty. First, changes in the value of grid services can be difficult to predict

and the underlying load, meteorological, and price forecast models can be im-

precise. Deterministic control is especially vulnerable to forecast uncertainty

as decisions are made based on predicted events that may never occur. Second,

the energy storage system model may be inaccurate. Mismatches between the

model employed and the real system can jeopardize the robustness of the con-

troller as decisions are made based on dynamics that the real equipment may

not be capable of. Further, because of degradation over calendar and cycle life,

electrochemical storage system dynamics can change over time, compounding

model mismatch. Robust control can, at least partially, compensate for both of

these sources of uncertainty by minimizing the suboptimality of decisions ac-

cording to the controller’s risk tolerance. If a controller is wholly risk adverse,

decisions are made based on the worst case scenario within the distribution of

possible outcomes, while greater risk tolerance can be handled with value-at-

risk objectives. However, more accurate service forecasts, and more accurate

energy storage system models, lead to decisions that will be closer to the true
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optimal decisions only available from a priori knowledge or hindsight. Given

that value forecasting models have already been the subject of extensive study,

the research presented here focuses on the aspects of optimal control unique to

battery storage, namely the models used to represent battery energy storage

system (BESS) dynamics.

1.2 Objectives

The overall objective of this dissertation is to advance the state-of-the-

art in battery energy storage control by quantifying and reducing the effects of

uncertainty from battery models on grid integration and operation of BESS.

This research is expected to improve the ability and reliability of BESSs to

supply grid services.

The specific research objectives are stated below:

Objective 1: Perform a Review of the Mathematical Models used for Optimal

Control of Electrochemical Energy Storage Systems

Within the BESS model itself, there are two linked sources of uncer-

tainty: unrepresented dynamics and performance variability [13,14]. The bat-

tery model most widely used in power system research is also the simplest.

Energy reservoir type models represent a battery’s energy capacity in kWh.

This simplification means that many of the dynamic, non-linear relationships

between voltage, current, temperature, and chemical concentrations in bat-

teries are unrepresented. An overly simplistic controller model can generate

significant uncertainty in the energy that is available for charge or discharge.

An observer, watching the battery’s performance over time, would see an ap-

parent variability in the energy capacity of the battery. However, performance
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variability is a result of an imperfect model. By using a more precise model, a

BESS controller can reduce observed variability and achieve higher and more

consistent performance. Selecting the best model for a given application can

take unnecessary, extensive research which many companies do not have the

resources to perform. Battery modeling is complex and quickly changing, and

there have been no comprehensive or critical reviews to help engineers navigate

the subject.

This objective presents the state-of-the-art in controller design based on

models that mathematically represent the physical dynamics and constraints

of batteries. As unrepresented dynamics can lead to suboptimal control, a

review of these models will help engineers navigate the range of available design

choices and helps researchers by identifying gaps in the field. When choosing

a BESS model, implicit assumptions are made about which physical dynamics

are important to the controller’s operation and which can be ignored. The

aim of this objective is to review the forms and functions of BESS models

with critical attention to their advantages, disadvantages, and characteristics.

Objective 2: Develop Algorithms for Reducing Uncertainty in Controller Bat-

tery Models

Once an appropriate battery controller model has been selected, pick-

ing model parameters can be a daunting task. Battery manufacturers often

consider certain parameters to be proprietary and so do not provide such infor-

mation to the engineers designing controllers. Experimental procedures have

been developed to estimate parameters, though these procedures can involve

expensive laboratory equipment and/or a significant amount of time to per-

form. Ideally, the controller would pick its own model parameters based on

operational data, though the algorithms available for this task are nascent at
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best [15].

This objective is to develop methods to minimize the uncertainty of

BESS controller models. This is accomplished through the development of ex-

perimental procedures, optimal parameter estimation algorithms, and adaptive

models.

Objective 3: Develop Methods for Risk-Averse and Robust Optimal Control of

BESS

With the BESS control model uncertainty reduced as much as is feasi-

ble, controllers can potentially account for the remaining uncertainty in their

control decisions through risk-averse and/or robust control. These methods,

commonly applied in finance and operations research, enable a controller to

hedge its decisions to prevent the worse-case scenario (robust control) or to

make large losses less likely (risk-averse control). This kind of control works

whenever the benefits of an energy storage service has asymmetric risk. Asym-

metric risk in the context of battery control is whenever the downside of overes-

timating performance outweighs the potential upside of underestimating per-

formance. For example: in peak load management, a battery is used to reduce

the peak electrical load as much as possible. If a controller overestimates

battery capacity, the battery may run out of energy prematurely and fail to

reduce the peak at all. Algorithms for risk averse control in BESS are rarely

used and underdeveloped.

This objective is to develop and demonstrate a methodology to design

advanced BESS controllers that are able to account for model uncertainty and

hedge decisions against asymmetric risk. This is accomplished by shaping the

model’s uncertainty to consistently and reliably underestimate performance

according to a quantitative risk tolerance parameter.
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Objective 4: Demonstrate the Potential for Controller Performance Improve-

ment to Maximize the Benefits of BESS in Power Systems

When calculating the cost of battery systems per kW, kWh, or opera-

tional life, the control system is generally not considered to be an important

factor. However, effective control systems are critical to the integration of

BESS on the grid and can act as a performance and life multiplier. A controller

cannot literally make a 1 MW battery inverter supply 2 MW but controller

improvements can use the 1 MW battery to reduce a customer’s peak electrical

load as if it were a larger battery. Research that demonstrates how controller

improvements directly translate to improvements in the services provided by

batteries will help to clarify this blind-spot in the field.

This objective is to demonstrate how controller improvements can use

the same hardware to greater effect, thereby reducing costs, increasing revenue,

and generally maximizing whatever benefits are being derived from the BESS.

1.3 Original Research Contributions and Dissertation
Outline

The research and analysis conducted in this dissertation, as illustrated

in Fig. 1.1, broadly improves battery system controllers by managing controller

model uncertainty in three ways: 1) by improving the methods for appropriate

model selection, 2) by reducing the uncertainty of the selected model as much

as possible, and 3) by explicitly representing the remaining quantified model

uncertainty. Model selection is performed by finding the simplest model that

represents the necessary physical dynamics, to an appropriate degree of both

physical salience and model order. Physical dynamics broadly include charge,

temperature, and degradation modeling domains, while specific technologies
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Figure 1.1: Graphical illustration of the objectives of this dissertation.

may also include pressure, volume, or other domains. Physical salience refers to

the degree to which the domain model matches the underlying physical mecha-

nism, the most prominent example of which is the distinction between energy,

charge, and chemical concentration based state-of-charge models. Lastly, the

model order refers to how many parameters are used to approximate a given

function (e.g. open-circuit-voltage) or the number of cells explicitly modeled

in the controller.

Once a model is selected, its uncertainty is reduced as much as possi-

ble through experimental analysis and adaptive modeling. By performing a

range of tests on a given device and optimizing a model from the collected

data, the model uncertainty can be minimized. Additionally, after a system is

operational, data can be collected and used to keep uncertainty low as battery

performance changes over time and use. Both methods can be used to cal-

culate and explicitly represent model uncertainty within the controller itself.
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Uncertainty is quantified by both state forecast error and by parameterizing

models with random variables.

These methods are applied to improve the performance of BESS control

systems and to perform risk-averse control. Advanced, high performance BESS

controllers are shown to reduce the required size of, or increase the accrued

benefits from, BESS in a range of power system applications. Risk-averse

control is able to hedge control decisions against asymmetric downside loss in

critical applications. Together, high performance risk averse control has the

potential to maximize the impact of BESS to integrate renewable power and

maintain the reliability, resilience, and efficiency of the electric grid.

The remainder of this section identifies the original research contribu-

tions made while achieving the objectives of this dissertation. Major contri-

butions are those that significantly advance the state-of-the-art while minor

contributions simply fill in gaps in understanding and only impact the state-

of-the-art in aggregate. The section also provides a list of all the publications

resulting from this research and outlines the organization of this dissertation.

Contributions to Objective 1

The contribution made while achieving Objective 1 is to perform a

comprehensive review of the mathematical models used for optimal control of

battery energy storage devices. The goal of this work is to understand the

forms and functions of BESS models with critical attention to their advan-

tages, disadvantages, and characteristics. This research helps navigate the

complex trade-offs involved in designing a BESS controller. Chapter 2 de-

scribes the state-of-the-art in battery system modeling for optimal control

(major), compares each model’s relative strengths and weaknesses (minor),

and identifies several gaps (minor).
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The work described in [13] demonstrates the importance of model se-

lection for optimal control by providing several example controller designs.

Simpler models may overestimate or underestimate the capabilities of the bat-

tery system. Adding physical dynamics can improve accuracy at the expense

of model complexity and computation time.

- D. Rosewater, D. Copp, T. Nguyen, R. Byrne, and S. Santoso, “Bat-

tery Energy Storage Models for Optimal Control” IEEE Access, De-

cember 2019. Article DOI: 10.1109/access.2019.2957698, Code DOI:

10.24433/CO.6925148.v1

Contributions to Objective 2

The contribution made while achieving Objective 2 is to reduce the

uncertainty of the selected controller models using experimental analysis and

operational data. Chapter 3 describes the application of a uniform testing

protocol to a battery energy storage system. The Protocol for Uniformly

Measuring and Expressing the Performance of Energy Storage [16] enables

fair benchmarking and comparison of different storage technologies. The work

described in [17], applies the protocol to a 1-megawatt rated energy storage

system to collect application experience and data that will help standards de-

velopment organizations to adapt and adopt the protocol with confidence and

clarity (minor). The work additionally develops new energy storage perfor-

mance metrics that provide more information to the device owner (minor).

Improvements in testing methodologies is one way of reducing model param-

eter uncertainty.

Chapter 4 develops a method of calculating optimal parameter values

for a state-of-charge model using operational data along with methods of quan-

10



tifying model accuracy. State-of-charge (SoC) forecasting models are widely

used in smart grid battery energy storage control design and optimization.

The work described in [15] presents three advances to the area of BESS SoC

forecasting. First, the work introduces two example models, the energy reser-

voir model (ERM) and the charge reservoir model (CRM), that are configured

for calculation of optimal parameters (minor). Second, the work develops

a method for optimal ERM and CRM parameter selection using operational

data to minimize RMS forecast error (major). Third, the work proposes a

framework for SoC forecast model accuracy assessment based on three metrics:

mean RMS error, 90% high error threshold, and 90% low error threshold (mi-

nor). The mean RMS error is a single intuitive metric for direct accuracy com-

parison, whereas the high and low thresholds represent the charge/discharge

schedule error margins achievable when using the model. These models and

methods were then implemented on two example lead-acid battery systems,

and the results were compared to conventional parameter selection methods

using the proposed model accuracy framework.

Chapter 5 describes a method or in situ parameter, and parameter un-

certainty, estimation. The work described in [14] develops a process for using

operational data to steadily improve the accuracy of an EMS model and cal-

culate the modeling uncertainty for use in risk-averse control (minor). The

process starts with an initial parameter set, which can be based on manu-

facturer ratings or rough order of magnitude guesses. This parameter set is

significantly smaller than alternative methods. It then takes operational data

and filters out days that do not meet certain requirements for salience and

quality. Qualifying data are then used to estimate candidate model param-

eters, whose accuracy is then tested on the most recent qualifying day not
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used for the estimate. This process improves EMS modeling accuracy, reduc-

ing modeling error, as qualifying data are supplied over time and use. By

applying this process, the EMS maintains an up-to-date and accurate model

to work with in optimizing charge and discharge. The work demonstrates the

effectiveness of the adaptive modeling process using real world data (minor).

- D. Rosewater, P. Scott and S. Santoso, “Application of a uniform test-

ing protocol for energy storage systems,” in Proc. 2017 IEEE Power

& Energy Society General Meeting, Chicago, IL, 2017, pp. 1-5. DOI:

10.1109/PESGM.2017.8274603

- D. Rosewater, S. Ferreira, D. Schoenwald, J. Hawkins, and S. Santoso,

“Battery Energy Storage State-of-Charge Forecasting: Models, Opti-

mization, and Accuracy,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp.

2453-2462, May 2019. DOI: 10.1109/TSG.2018.2798165

- D. Rosewater, B. Schenkman, and S. Santoso, “Adaptive Modeling Pro-

cess for a Battery Energy Management System” in Proc. Symposium on

Power Electronics, Electrical Drives, Automation and Motion, Sorrento,

Italy, June 2020, to be published.

Contributions to Objective 3

The contribution made while achieving Objective 3 is to incorporate an

understanding of uncertainty into the controller itself to shape its decisions to

be more robust. Chapter 6 describes a risk averse model predictive controller

design for battery energy storage systems. The work described in [18] develops

and demonstrates an advanced methodology for designing BESS controllers un-

der time of use (ToU) price arbitrage and peak demand charge management
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applications. A state-of-the-art ERM is used as the baseline for control per-

formance comparison. The proposed CRM based model predictive controller

outperforms the ERM based controller by achieving a lower total electric bill

when pseudo-empirically applied in an example scenario (major). Because

peak load management has asymmetric risk for overestimating available en-

ergy, the uncertainty of the CRM is shaped to consistently underestimate

capacity. This risk-averse CRM yields better controller performance than the

ERM and is more robust to variations in BESS performance than the CRM

(major). This methodology for designing BESS controllers can be applied

in a broad range of energy storage applications, wherever the risk profile of a

scheduled service is asymmetric.

- D. Rosewater, R. Baldick, and S. Santoso, “Risk-Averse model predictive

control design for battery energy storage systems” IEEE Trans. Smart

Grid, September 2019. DOI: 10.1109/TSG.2019.2946130

Contributions to Objective 4

The contribution made while achieving Objective 4 is a broad demon-

stration of the potential for advanced controllers to improve the performance

and value of battery energy storage systems. Chapter 7 designs a controller for

stabilizing a synchronous generator using both the field voltage and real power

injection by a battery energy storage system (minor). The power system stabi-

lizer, described in [19], is enhanced with both low frequency transmission and

energy storage. The optimal steady-state optimal feedback control is designed

as a linear quadratic regulator, including a needed reduced order observer,

to improve stability. Chapter 8 describes an advanced control algorithm for

smoothing out the fluctuations in distribution system voltage (minor). The
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work described in [20] designs a method for selecting real and reactive power

from energy storage devices connected to the distribution system to smooth ac

voltage. Rather than smoothing PV power, smoothing voltage directly is able

to counteract the voltage impacts of PV, whether or not the energy storage

is co-located with the PV. Chapter 9 develops a optimal battery controller

using SoC, temperature, and degradation models (minor). Because battery

degradation is highly dependent on both charge and temperature, a controller

that accounts for all three physical domains is able to make better control

decisions. The work described in [21] demonstrates how a model predictive

controller can be tuned to optimally reduce a customer’s electrical bill, while

constrained to a 5, 10, 15, or 20 year planned operational life.

- D. Rosewater, Q. Nguyen and S. Santoso, “Optimal Field Voltage and

Energy Storage Control for Stabilizing Synchronous Generators on Flex-

ible AC Transmission Systems,” in Proc 2018 IEEE/PES Transmission

and Distribution Conference and Exposition (T& D), Denver, CO, 2018,

pp. 1-9. doi: 10.1109/TDC.2018.8440436

- P. Siratarnsophon, K. W. Lao, D. Rosewater and S. Santoso, “A Volt-

age Smoothing Algorithm using Energy Storage PQ Control in PV-

integrated Power Grid,” in IEEE Transactions on Power Delivery. doi:

10.1109/TPWRD.2019.2892611

- D. Rosewater, A. Headley, F. Mier, and S. Santoso, “Optimal Control

of a Battery Energy Storage System with a Charge-Temperature-Health

Model” in Proc. 2019 IEEE Power & Energy Society General Meeting,

August 2019
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In summary, this dissertation yields the following key technical contributions:

� Provides a review of the battery system model selection options for op-

timal controllers

- (major) Provides an complete review of the range of battery energy

storage models used in optimal control design (Chapter 2).

- (minor) Compares each model’s relative strengths and weaknesses

(Chapter 2).

- (minor) Identifies gaps in the state-of-the-art of battery modeling

that can serve as opportunities for future research (Chapter 2).

� Develops new methods for uncertainty minimization using experimental

and operational data

- (major) Develops a new method for selecting optimal parameter

values based on operational data presented (Chapter 4).

- (minor) Applies a uniform test protocol to a grid scale energy stor-

age system to reduce performance uncertainty (Chapter 3).

- (minor) Develops new energy storage performance metrics that pro-

vide more information to the device owner (Chapter 3).

- (minor) Reformulates two SoC forecasting models to be conducive

to parameter optimization (Chapter 4).

- (minor) Develops a new framework for quantifying model accuracy

(Chapter 4).

- (minor) Develops a process for the EMS to calculate and improve

the accuracy of its control model using the operational data pro-

duced by the battery system (Chapter 5).
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- (minor) Demonstrates the effectiveness of the adaptive modeling

process using real world data (Chapter 5).

� Develops a high performance, risk-averse control system for battery en-

ergy storage devices

- (major) Enables the application of a more accurate, but non-

convex, battery system model by calculating upper and lower bounds

on the globally optimal control solution (Chapter 6).

- (major) Modifies battery controller model to consistently underes-

timate capacity by a statistically selected margin, thereby hedging

its control decisions against normal variations in battery system

performance (Chapter 6).

� Demonstrates the effectiveness of controller improvements for maximiz-

ing the value of grid energy storage assets

- (minor) Designs and demonstrates an advanced controller that is

able to optimally stabilize a synchronous generator, over a rang of

frequencies, using both field voltage and a co-located energy storage

system (Chapter 7).

- (minor) Designs and demonstrates an advanced controller to smooth

grid voltage using energy storage in distribution systems with high

penetration PV (Chapter 8).

- (minor) Designs and demonstrates an advanced control system to

optimally reduce a customer’s electrical bill using a BESS, subject

to a minimum operational life constraint (Chapter 9).
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Chapter 2

Battery Energy Storage Models for Optimal

Control

1 As batteries become more prevalent in grid energy storage applica-

tions, the controllers that decide when to charge and discharge become critical

to maximizing their utilization. Controller design for these applications is

based on models that mathematically represent the physical dynamics and

constraints of batteries. Unrepresented dynamics in these models can lead to

suboptimal control. Our goal is to examine the state-of-the-art with respect to

the models used in optimal control of battery energy storage systems (BESSs).

This review helps engineers navigate the range of available design choices and

helps researchers by identifying gaps in the state-of-the-art.

BESS models can be classified by physical domain: state-of-charge

(SoC), temperature, and degradation. SoC models can be further classified by

the units they use to define capacity: electrical energy, electrical charge, and

chemical concentration. Most energy based SoC models are linear, with vari-

1D. Rosewater, D. Copp, T. Nguyen, R. Byrne, and S. Santoso, “Battery Energy Stor-
age Models for Optimal Control” IEEE Access, December 2019. Article DOI: 10.1109/ac-
cess.2019.2957698, Code DOI: 10.24433/CO.6925148.v1
The dissertator was the principle investigator for this research including collecting and or-
ganizing literature sources, programming example applications, writing/editing the article
itself, and responding to peer review comments. Co-authors helped plan the scope of the
article, located additional sources in their areas of specialty, and conducted multiple rounds
of technical review.
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ations in ways of representing efficiency and the limits on power. The charge

based SoC models include many variations of equivalent circuits for predicting

battery string voltage. SoC models based on chemical concentrations use ma-

terial properties and physical parameters in the cell design to predict battery

voltage and charge capacity. Temperature is modeled through a combination

of heat generation and heat transfer. Heat is generated through changes in en-

tropy, overpotential losses, and resistive heating. Heat is transferred through

conduction, radiation, and convection. Variations in thermal models are based

on which generation and transfer mechanisms are represented and the number

and physical significance of finite elements in the model. Modeling battery

degradation can be done empirically or based on underlying physical mech-

anisms. Empirical stress factor models isolate the impacts of time, current,

SoC, temperature, and depth-of-discharge (DoD) on battery state-of-health

(SoH). Through a few simplifying assumptions, these stress factors can be

represented using regularization norms. Physical degradation models can fur-

ther be classified into models of side-reactions and those of material fatigue.

This chapter demonstrates the importance of model selection to optimal

control by providing several example controller designs. Simpler models may

overestimate or underestimate the capabilities of the battery system. Adding

details can improve accuracy at the expense of model complexity, and com-

putation time. Our analysis identifies six gaps: deficiency of real-world data

in control literature, lack of understanding in how to balance modeling detail

with the number of representative cells, underdeveloped model uncertainty

based risk-averse and robust control of BESS, underdevelopment of nonlinear

energy based SoC models, lack of hysteresis in voltage models used for con-

trol, lack of entropy heating and cooling in thermal modeling, and deficiency
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of knowledge in what combination of empirical degradation stress factors is

most accurate. These gaps are opportunities for future research.

Contributions of this chapter were identified as follows: (major) pro-

vided an complete review of the range of battery energy storage models used

in optimal control design, (minor) compared each model’s relative strengths

and weaknesses, and (minor) identified gaps in the state-of-the-art that can

serve as opportunities for future research.

2.1 Introduction

BESS can play an integral role in resilient and efficient power systems

because of their ability to provide a range of energy services [12]. One of the

fundamental problems in BESS integration within the electric power grid is

designing control systems to maximize the value of energy services provided

[22]. BESS models used in control systems formally represent assumptions

about the physics underlying the conversion and storage of electrical energy.

The BESS model is a critical element of effective control and operation of

BESS that, ultimately, enables more resilient and efficient power systems.

The control objective for a BESS often involves minimizing an objective

function (e.g., cost to the operator) subject to the constraints of the system.

The controller must decide settings for both real and reactive power (decision

variables), within limits on power, energy, state-of-charge (SoC), voltage, cur-

rent, temperature, and state-of-health (constraints). Unlike in electric vehicles

or consumer electronics (where the controller is an element of the battery man-

agement system (BMS) [23]), the BESS controller is an element of the energy

management system (EMS), which is responsible for issuing control decisions

for all devices within its purview (e.g., a home, building, microgrid, etc.). The
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Figure 2.1: Typical energy management system control diagram.

BMS and EMS can share hardware and have overlapping responsibilities, as

shown in Fig. 2.1, and often do not share a BESS model. Models used in BMSs

are often developed by the battery manufacturers themselves and hence can

contain detailed information about underlying chemical process not available

to an EMS controller. Further, for applications that require accuracy at very

high sample rates, such as power system stability, the inverter can have its

own battery model for dynamic optimal control. This chapter focuses on opti-

mal BESS control design within the EMS and so falls between the established

fields of optimal control and battery modeling.

The methods for designing optimal controllers for energy storage sys-

tems have already been reviewed in [22]. Example methods as applied to BESS

include model predictive control (MPC) [24–27], and linear quadratic regulator

(LQR) control [19,28]. While there are large differences between the methods

for designing controllers, at the core of any approach is a model of the battery

system. In this chapter, we will largely ignore what method is used to design

the controller, instead focusing on the commonalities and differences between

the models.
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BESS models mathematically represent the physical dynamics and con-

straints of real systems. When choosing a BESS model, implicit assumptions

are made about which physical dynamics are important to the controller’s op-

eration and which can be ignored. If a model ignores a state variable (e.g.,

temperature) that ends up as a constraining factor in the physical system,

the control will be suboptimal. Similarly, if a model inaccurately represents

a system state variable (e.g., battery state-of-charge), the controller will have

to constantly correct for the modeling error and again will be suboptimal.

However, consideration of which state variables to include and what physical

dynamics to represent must inevitably be balanced with the complexity of the

model and the computational burden of the controller [3, 29, 30]. The chart

in Fig. 2.2 conceptually illustrates the trade-off between model accuracy and

complexity. The model categories to the left on the chart are simple enough

for control design and do not require detailed knowledge of battery cell con-

struction and chemistry. At some level of model complexity there is a tipping

point where the improvements in accuracy are too costly, in terms of compu-

tation or level of information required, to be useful in control design. Further,

as there are thousands of individual cells in a BESS, there is logically some

point at which it is better to represent more cells at the same level of detail

rather than increasing the level of detail. These points are different depending

on application and technology.

The goal of this chapter is to review the forms and functions of BESS

models with critical attention to their advantages, disadvantages, and charac-

teristics. This work will help readers navigate the complex trade-offs involved

in designing a BESS controller. To explicitly define the scope of this review,

we start with a general optimal control problem and then add detail relevant
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Figure 2.2: Illustration of the trade-off between model accuracy and complex-
ity (computational complexity equates to CPU time, and model accuracy has
also been referred to as “predictability” [3])

to BESS in order to classify different aspects of battery models. A general

optimal control problem is formulated in:

min
x∈Rm

f(x) (2.1.1)

subject to: g(x) = [0]

h(x) ≤ [0]

where x is a vector of decision variables, m is the total number of decision vari-

ables (roughly equal to number of BESS model variables × the number of time

steps in the optimization time horizon), f : Rm → R is the objective function,

g : Rm → Rr is a vector of equality constraints, and h : Rm → Rw is a vec-

tor of inequality constraints. In general, for BESS applications, the objective

function to be minimized can be split into two terms: an objective associated

with battery operation and degradation (fb) and an objective associated with
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the service being provided (fs). Further, the sets of constraints can be split

into constraints dealing with the service (e.g., peak load constraint) and con-

straints based on the equipment (e.g., maximum battery voltage). This split

is formalized in the multi-objective optimization problem in:

min
x∈Rm

fs(x) + fb(x) (2.1.2)

subject to: gs(x) = [0]

gb(x) = [0]

hs(x) ≤ [0]

hb(x) ≤ [0]

The purpose of splitting the problem up is to isolate the components of the

battery model (fb, gb, and hb), as distinct from those of the service model (fs,

gs, and hs).

This chapter conducts a review of the battery model components of the

problem in (2.1.2). Specifically, the objective functions fb(x) and constraints

gb(x), and hb(x) associated with optimal control of BESS. The inequality con-

straints hb(x) ≤ 0 ensure safe operation and battery longevity (e.g., preventing

over-temperature T ≤ Tmax, where T is the battery temperature, and Tmax is

the maximum temperature). The equality constraints generally represent a

battery’s physical dynamics and the mathematical relationships between vari-

ables (e.g., pdc = vbatibat, where pdc is the dc power, vbat is the battery voltage,

and ibat is the battery current). The expression fb(x) represents the BESS’s

contribution to the objective function based on the control action (e.g., where

the objective is to minimize costs, fb(x) may be CEoL%̇, where CEoL is the end-

of-life cost and %̇ is the rate of change in state-of-health (SoH)). Our goal is to
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present the advantages and disadvantages of various models to inform design

and further research on optimal control of BESS.

This chapter is organized as follows. Section 2.2 establishes an exam-

ple scenario used in each model domain section to demonstrate its applica-

tion. Section 2.3 introduces the various models for state-of-charge, Section 2.4

discusses temperature models, and Section 2.5 discusses battery degradation

models. Each of these sections first introduces the model’s functions, state

variables and physical dynamics, and then includes a representative controller

design. Section VI discusses broad trends and observations on the state-of-

the-art including identified gaps, and Section VII provides a summary and

conclusions.

2.2 Problem Statement

In this chapter we introduce models for different battery system dynam-

ics. To illustrate the impact of different classes of models on control system

performance, a representative controller is formulated for each modeling do-

main. This section establishes our example scenario in the form of a problem

statement. A summary of scenario assumptions can be found in Table 2.1.

We consider a commercial electrical customer billed for both time-of-use

(ToU) energy and peak-demand charges. This customer decides to purchase

and install a battery to reduce their electricity bill. The customer’s energy

contract charges 9 ¢/kWh during off-peak hours, 11 ¢/kWh during partial-

peak hours, and 15 ¢ during peak hours according to the schedule in Fig.

2.3 (top) [10]. The utility then charges a $50/kW service fee according to the

peak net load measured during the billing period. This price is consistent with

demand charges in specific localities in California and New York [31]. The load
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data used for this problem, as shown in Fig. 2.3 (bottom), are adapted from

the EPRI test circuit ‘Ckt5’ loadshape, normalized to a 1.0 MW peak [4]. We

will assume that the load and price are known a priori. Without the battery,

the total bill would be calculated according to:

fs = ∆tw>l + max(l) ν (2.2.1)

where l ∈ Rn is the load (kW) over time, w ∈ Rn is the ToU energy price

($/kWh) over time, ν is the service fee in $/kW for peak net load measured

during the billing period, and •> denotes a vector’s transpose. We use a time-

step ∆t = 15 minutes (0.25 hours), and n = 96 (1 day). For this problem

we assume that the net-load is always greater than zero. The total baseline

electrical bill for this day is $52,080 ($50,000 demand, $2,080 energy). With

the addition of a BESS that can supply (-), or absorb (+), power p, the

customer’s total bill can be modified to:

fs(p) = ∆tw>(l + p) + max(l + p) ν (2.2.2)

where p is the battery system power that element wise subtracts from l when

the battery system is discharging. The problem formulation can be expressed

as: design an optimal battery dispatch control scheme that minimizes the cus-

tomer’s total bill subject to the constraints of the battery and the customer’s

system. The dispatch is open-loop, and we do not consider modeling uncer-

tainty in this control scheme. Hence, we do not consider the mismatch between

the controller model and a real system. Research into the effects of modeling

uncertainty on BESS controller performance is presented in Chapter 6.
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Figure 2.3: Time-of-use price schedule (top), and customer electrical load
(bottom) [4]

Table 2.1: Summary of Case Study Assumptions
Ownership Commercial Electrical Customer
Load Profile From the EPRI test circuit ‘Ckt5’ loadshape

summer, scaled to a 1.0 MW peak [4].
ToU Tariff 9 ¢/kWh off-peak,

11 ¢/kWh partial-peak hours (9:00 to 21:00),
15 ¢/kWh peak (12:00 to 18:00) [10]

Demand Tariff ν = $50/kW based on peak net load [31].
Billing Daily, 15 minute time steps.

2.3 State-of-Charge Models

Electrochemically, a battery cell’s SoC is related to the concentration of

the limiting active species in the relevant reaction at the associated electrode

[5]. This physical association however, breaks down when the electrochemical

definition of SoC is applied to strings as the thought experiment in Fig. 2.4

illustrates. The SoC of two cells in series can’t simply be averaged without

abstracting its definition. When referring to BESS, it is more common to use
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Figure 2.4: Thought experiment demonstrating how the electrochemical defi-
nition of the SoC of a battery loses physical meaning when applied to strings [5]

an empirical definition of SoC, represented in:

State of Charge ,
Available Capacity

Nominal Capacity
(2.3.1)

which is the ratio of available to nominal capacity. Normalizing SoC to the

range [0,1] or [0%,100%] is an intuitive simplification, especially as nominal

capacity can change over time, but it is not mathematically necessary to do

so. In this context, capacity can be measured in energy with units of kilowatt-

hours (kWh), charge with units of ampere-hours (Ah) or in concentration with

units of moles-per-liter (mol/L). Constraints on SoC are shown in:

ςmin ≤ ς ≤ ςmax (2.3.2)

where ς is the SoC, ςmax is the maximum SoC, and ςmin is the minimum SoC.

These box constraints are often enforced by a controller to ensure safety and

design life, but many alternative methods for incorporating degradation into

optimal control are discussed in Section 2.5. Note that a BMS can also prevent

overcharge/overdischarge by constraining SoC, but these bounds are generally

set at or outside the normal operational range the controller uses.
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Modeling SoC helps the controller know when in the future it is likely

to encounter these limits and to make control decisions accordingly. In optimal

control, SoC models inform the controller how control decisions affect future

SoC and enable the controller to adjust decisions to optimize an objective.

Therefore, errors in SoC models can lead to poor control performance or even

infeasible solutions.

The various models for SoC can be classified by the units with which

they define nominal and available capacity according to (2.3.1). Models that

define capacity in units of energy (kWh) can be classified as energy reser-

voir models (ERMs), those which define it in units of charge (Ah) can be

classified as charge reservoir models (CRMs), and those which define it in

units of concentration (mol/L) can be classified as concentration-based mod-

els. ERMs, discussed in Section 2.3.1, do not include dc voltage or current,

so they generally have fewer variables and constraints. This simplification can

lead to unrepresented physical dynamics that can, under some circumstances,

have negative effects. CRMs, discussed in Section 2.3.2, include expressions

to represent current-voltage (I-V) dynamics which can improve accuracy at

the expense of increased model complexity. Concentration based models, dis-

cussed in Section 2.3.3, include many parameters associated with the specific

electrochemical reaction and cell design that can predict battery dynamics.

Each has its appropriate applications in control design as well as difficulties

and drawbacks. Table 2.2 shows a summary of these trade-offs as discussed in

detail in the following subsections.
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Table 2.2: Summary of SoC Models I
Model Type Parameters Advantages Disadvantages References

ERM: no effi-
ciency losses or
self-discharge

Qcap, ςmax,
ςmin, pmax,
pmin, Smax,
p.f.min

convex con-
straints,
lowest com-
putational
burden

assumes ex-
tremely narrow
operational
conditions

[27,32–37]

ERM: with lin-
ear efficiency
losses, self-
discharge, and
kinetic-model
constraints

Qcap, ηe, psd,
ςmax, ςmin,
pmax, pmin,
m1, b1, m2,
b2, Smax,
p.f.min

convex con-
straints,
simple to
parameterize

inaccurate
when operated
over a range
of voltage,
current, or SoC

Without
kinetic-
model:
[26, 38–49].
With kinetic-
model: [6, 50]

ERM: nonlin-
ear

Qcap(ς, T ),
ηe(ς, T ),
psd(ς, T ),
ςmax, ςmin,
pmax, pmin,
m1, b1, m2,
b2, Smax,
p.f.min

potential
for higher
accuracy
depending
on accuracy
of nonlinear
functions

nonlinear mod-
els increase
complexity and
computational
burden

[51–53]

CRM: no
dynamic
voltages

pdc(p)*,
Ccap, ηc, isd,
voc(ς)*, R0,
ςmax, ςmin,
pmax, pmin,
imax, imin,
vmax, vmin,
Smax, p.f.min

high accuracy
for low sample
rate, long du-
ration model
forecast

nonlinear mod-
els increase
complexity and
computational
burden

[54–60]
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Table 2.3: Summary of SoC Models II
Model Type Parameters Advantages Disadvantages References

CRM: with
dynamic
voltages

pdc(p)*,
Ccap, ηc, isd,
voc(ς)*, R0,
R1, C1, R2,
C2, ςmax, ςmin,
pmax, pmin,
imax, imin,
vmax, vmin,
Smax, p.f.min

good accu-
racy for high
sample rate,
long dura-
tion model
forecasts

high complex-
ity and compu-
tational burden

[24,25,61–65]

SPM

pdc(p)*,
Φp (xs,p,surf)*,
Φn (xs,n,surf)*,
ςmax, ςmin,
pmax, pmin,
imax, imin,
vmax, vmin,
Smax, p.f.min

good accu-
racy for high
sample rate,
long dura-
tion model
forecasts, en-
ables physical
degradation
models

difficult to
parameterize,
much more
computation-
ally complex
than the CRM.

[1,59,66–68]

P2D

pdc(p)*,
Ccap, ηc, isd,
voc(ς)*, R0,
R1, C1, R2,
C2, ςmax, ςmin,
pmax, pmin,
imax, imin,
vmax, vmin,
Smax, p.f.min

similar to
SPM but
more accu-
rate at high
currents.

highest com-
plexity and
computa-
tional burden,
may need
simplifying as-
sumptions for
use in control

[29,66,69,70]

* Functions such as pdc(p) and voc(ς) each have many variations. The
accuracy of these functions has a significant impact on the overall model’s
accuracy and should be chosen to closely approximate the state variable.
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2.3.1 Energy Reservoir Models

ERMs are a class of SoC model that define capacity in units of energy

(kWh). An example ERM for SoC is shown in:

Qcap
∂ς

∂t
= ηep

+ + p− (2.3.3)

where ς is the SoC, p+ and p− are the charge and discharge ac power respec-

tively, Qcap is the energy capacity, ηe is the round trip energy efficiency, and

∂ς/∂t represents the rate of change of SoC.

To conveniently represent the round trip efficiency while avoiding non-

linearity and non-convexity, charge power and discharge power are formulated

as independent variables in (2.3.3). While this means that simultaneous charge

and discharge would not violate the explicit constraints, the objective function

is often structured such that there is no advantage to candidate solutions that

do so. Hence, as long as energy prices are positive, and efficiency is in the range

[0,1], the optimal solution to a control problem with this SoC constraint will

always satisfy complementary slackness between charge and discharge power.

When objective does not have these properties, an additional non-linear/non-

convex constraint can be added to prevent solutions with simultaneous charge

and discharge (p+p− = 0).

Rather than a constant, as shown in (2.3.3), the energy efficiency of

a BESS can be a time-varying, nonlinear function of battery SoC, voltage,

current, temperature, and state-of-health (SoH). Assuming a constant energy

efficiency can, by extension, be an implicit assumption these states are also

constant. Some of these assumptions are valid for a range of applications.

SoH, for instance, changes very slowly with respect to a control horizon. Other
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Table 2.4: Conversion Between Equivalent Efficiency Representations
Type 1 Q

(1)
cap

∂ς
∂t

= η
(1)
chap

+ + p− + p
(1)
sd

Type 2 Q
(2)
cap

∂ς
∂t

= η
(2)
chap

+ + 1

η
(2)
dis

p− + p
(2)
sd

Type 3 Q
(3)
cap

∂ς
∂t

= p+ + 1

η
(3)
dis

p− + p
(3)
sd

To Type 1 To Type 2 To Type 3

From
Type 1

Q
(1)
cap

η
(1)
dis

p
(1)
sd

Q
(2)
cap =

Q
(1)
cap√
η

(1)
cha

η
(2)
cha =

√
η

(1)
cha

η
(2)
dis =

√
η

(1)
cha

p
(2)
sd =

p
(1)
sd√
η

(1)
cha

Q
(3)
cap =

Q
(1)
cap

η
(1)
cha

η
(3)
dis = η

(1)
cha

p
(3)
sd =

p
(1)
sd

η
(1)
cha

From
Type 2

Q
(1)
cap =

Q
(2)
capη

(2)
dis

η
(1)
cha = η

(2)
cha η

(2)
dis

p
(1)
sd = p

(2)
sd η

(2)
dis

Q
(2)
cap η

(2)
cha

η
(2)
dis p

(2)
sd

Q
(3)
cap =

Q
(2)
cap

η
(2)
cha

η
(3)
dis = η

(2)
cha η

(2)
dis

p
(3)
sd =

p
(2)
sd

η
(2)
cha

From
Type 3

Q
(1)
cap =

Q
(3)
capη

(3)
dis

η
(1)
cha = η

(3)
dis

p
(1)
sd = p

(3)
sd η

(3)
dis

Q
(2)
cap =

Q
(3)
cap

√
η

(3)
dis

η
(2)
cha =

√
η

(3)
dis

η
(2)
dis =

√
η

(3)
dis

p
(2)
sd =

p
(3)
sd

√
η

(3)
dis

Q
(3)
cap

η
(3)
dis

p
(3)
sd

This conversion table applies equally to the ERM and CRM. For the CRM,
replace variables p+ and p− with i+bat and i−bat and parameters Qcap and psd

with Ccap and isd respectively.
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assumptions, however, are only valid for a narrow operational range. How wide

the operational range can be, while the ERM remains a sufficiently accurate

approximation, depends on how flat the energy efficiency curve is with respect

to each variable. For example, changing battery voltage can change BESS

efficiency but some battery types have a wide range of SoC where the open-

circuit-voltage is nearly constant. ERMs are more accurate over a wider range

of SoC for these types of batteries than for a battery whose open-circuit-voltage

changes quickly with respect to SoC. ERMs use a simple representation of SoC

that is based on many assumptions, so it may or may not be appropriate for

a given application.

Some previous work using ERM ignore efficiency losses entirely [27,32,

34–36]. However, due to the error it incurs, this is ill-advised for controllers

that schedule SoC over any significant time horizon. Much work includes both

charge and discharge efficiencies [26, 37–39, 41–46]. Self-discharge power can

also be included in an ERM [26,39,41,45–48] as shown in:

Qcap
∂ς

∂t
= ηep

+ + p− + psd (2.3.4)

where psd is the self-discharge power.

We refer to (2.3.4) as a Type 1 model, in that it only includes charge

efficiency. Models that include both charge and discharge efficiencies are re-

ferred to as Type 2 models, while those that only include discharge efficiency

are referred to as Type 3 models. These model types are able to produce

equivalent relationships between power and the rate of change in SoC over

time. Table 2.4 shows the conversion calculations needed to move from one

type to another while maintaining this equivalence. We use a Type 1 model

in this chapter (with ηcha = ηe the round trip energy-efficiency) because it has
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the intuitive property that the SoC multiplied by the capacity directly reflects

how much energy is expected to be available from the battery on discharge.

While most ERM use ac power, a few use dc power [71] by including

many of the constraints in the CRM. The manufacturer dc kWh rating for

batteries is calculated based on either the Ah rating multiplied by the nominal

battery voltage or the energy extracted during a constant current discharge

test. Hence, this approach is still subject to the inaccuracy of other ERM, over

a wide operational range, if voltage is far from the nominal voltage assumed

or the constant current rate used during testing.

Though it is not commonly done, all three parameters can be functions

of the SoC or temperature or both (Qcap(ς, T ), ηe(ς, T ), and psd(ς, T )) [51–53].

The most common version of this is SoC dependent losses psd(ς) = msdς + bsd

where msd is the proportional power loss and bsd is the power loss at ς = 0

[37, 40]. Adding nonlinearity to these functions has the potential to increase

predictive accuracy over a wider operational range of SoC and warrants further

investigation [51].

To represent the relationship between SoC and the power limits (pmax

and pmin) a two reservoir ERM, also called the kinetic battery model, is some-

times used [6,50]. The kinetic battery model splits the reservoir into available

energy and bound energy as shown in Fig. 2.5 and in:

(1− cf)Qcap
∂ς1
∂t

= Γe(ς2 − ς1) (2.3.5a)

cfQcap
∂ς2
∂t

= ηep
+ + p− + Γe(ς1 − ς2) (2.3.5b)

where cf is the fraction of total capacity in the available reservoir, and Γe

is a time constant that governs the rate of energy transfer between the two

reservoirs. The physical intuition of this model is that the higher the discharge
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Battery System (may include power conversion)

(1 − 𝑐f)𝑄max𝜍1 𝑐f 𝑄max 𝜍2
Γe

Discharge Power (𝑝e−)

Figure 2.5: Energy Based Kinetic Battery Model [6]

rate the more quickly the available energy is depleted, and the low-level limit

of the tank is reached. The kinetic battery model type ERM is equivalent to

the linear inequality constraints on power in:

pmin ≤ p ≤ pmax (2.3.6a)

m1ς + b1 ≤ p ≤ m2ς + b2 (2.3.6b)

where pmin is the discharge power limit, pmax is the charge power limit, m1

and b1 are the slope and intercept of the linear power limit on discharge,

respectively, and m2 and b2 are the slope and intercept of the linear power limit

on charge, respectively. These constraints are encountered at high discharge

rate more quickly according to the slope m1 and intercept b1. These constraints

then reduce maximum power linearly as SoC approaches its minimum, the

same as if the maximum power is constrained by the difference between tank

levels in the kinetic battery model. The limits defined in (2.3.6) are shown in

Fig. 2.6

Injection and absorption of reactive power can be an important capabil-

ity for BESS in many applications [12]. While reactive power does not directly

affect SoC, it can indirectly affect SoC by constraining real power. Constraints
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Figure 2.6: Feasible region for ac power described by the kinetic battery model

on apparent power and power factor are presented in [42]:

p = p+ + p− (2.3.7a)

p2 + q2 ≤ S2
max (2.3.7b)∣∣∣∣∣ p√

p2 + q2

∣∣∣∣∣ ≥ p.f.min (2.3.7c)

where q is the reactive power (var), Smax is the apparent power limit, and

p.f.min is the minimum power factor. While there are no direct incentives for

reactive power, there might be penalties on poor power factors. Therefore in

many cases, constraint 2.3.7 must be enforced.

2.3.1.1 ERM Application

In this section we solve the problem outlined in Section 2.2 with an

optimal controller designed using an ERM. The ERM is used here to demon-

strate its application, however, it is not the most appropriate model for this

problem because of its inaccuracy over a wide range of voltage in this scenario.
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In cases where the performance of the ERM model is less than desirable, it

is sometimes employed because of the computational simplicity. The example

scenario listed here serves to demonstrate how the ERM can be applied to

solve a simple problem, and one can extrapolate it to how it could be used

to solve a more complicated problem. Example parameters for the ERM are

listed in Table 2.5.

We can express the constraint described in (2.3.4) between each SoC

using the vector equation (2.3.8).

QcapDς = ηep
+ + p− + psd[1] (2.3.8)

where ς ∈ Rn+1 is the SoC at each time step, p+ ∈ Rn
+ and p− ∈ Rn

− are

the ac charge and discharge power during each time step, and the matrix D is

defined below.

D =
1

∆t


−1 1 0 . . 0
0 −1 1 0 . .

. .
. .

0 0 −1 1


n×(n+1)

(2.3.9)

The SoC constraint in (2.3.8) can be included with the kinetic battery
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Table 2.5: Energy Reservoir Model Parameters

Name Symbol Value
Energy Capacity Qcap 600 kWh
Energy Efficiency ηe 65%
Self-Discharge Power psd -7 kW
Maximum Discharge
Power

pmax 500 kW

Maximum Charge Power pmin -500 kW
Maximum SoC ςmax 95%
Initial SoC ς0 60%
Minimum SoC ςmin 20%
Kinetic model discharge
slope

m1 pmin / 10% *

Kinetic model discharge in-
tercept

b1 -ςmin ×m1 *

Kinetic model charge slope m2 -pmax / 5% *
Kinetic model charge inter-
cept

b2 -ςmax ×m2 *

Note: these model parameters are meant to represent a typical battery
system and do not necessarily reflect any specific equipment.
* These slope and intercept values are written in terms of the power and SoC
limits above. The value -pmax / 10% indicates that the charge limit will be
imposed over an SoC band of 10%, while -ςmin ×m1 calculates a y-intercept
that makes the power limit = 0 at ς = ςmin.
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model constraints in (2.3.6) yielding the problem formulation in:

min
xERM∈R3n+2

∆tw>(l + p+ + p−) + ντ (2.3.10a)

subject to:

QcapDς = ηep
+ + p− + psd[1] (2.3.10b)

ς[1] = ς0 (2.3.10c)

ς[1] = ς[n] (2.3.10d)

pmin[1] ≤ p+ + p− ≤ pmax[1] (2.3.10e)

ςmin[1] ≤ ς ≤ ςmax[1] (2.3.10f)

m1ς + b1[1] ≤ p+ + p− ≤ m2ς + b2[1] (2.3.10g)

l + p+ + p− ≤ τ [1] (2.3.10h)

where xERM = {p+,p−, ς, τ} ∈ R3n+2, and τ ∈ R is a dummy variable that

represents the peak net load. The constraint (2.3.10c) ensures that control de-

cisions are made based on the current estimated SoC. The constraint (2.3.10d)

represents the intuitive assumption that the BESS will continue to operate af-

ter the end of the current control horizon and that the next period will be

similar to this one. In this application, (2.3.10d) is used to make simulation

results easier to interpret and compare. The objective has been modified to

use the dummy variable τ to represent peak load in the objective and add a

constraint that it be greater than the net load at every time (2.3.10h).

In the code accompanying this chapter the minimum heat generation

regularization term, described in Section 2.5.1.1 (Π||p+ + p−||22, with a very

small weight Π = 1e-5), is applied to the objective in this and each application

script. This has the effect of avoiding spikes or abrupt changes in power, while

not significantly impacting the minimum value achieved.
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Information on numerical algorithms for solving general linear and non-

linear optimization problems can be found in [72,73]. We solve this using the

Pyomo optimization modeling language [74, 75] and the Ipopt interior point

optimization problem solver [76]. The solution is shown in Fig. 2.7. Note that

even though the maximum discharge power is 500 kW, the battery is only able

to reduce the peak net load by approximately 85 kW because of limitations on

energy. The effect of the kinetic battery model can be observed around hour

10, when the battery finishes charging then pauses for one time step only to

then charge at a low level to maintain 94.8% SoC. This artifact of the model is

because the maximum charge rate at 95% SoC is 0 kW which is insufficient to

counter self-discharge power. The ERM expects to be able to reduce the peak

to 914.7 kW and it is clear from the calculated net load the schedule allocates

charging to the periods of low electricity price.

The control solution reduces the total electrical bill from $52,080 ($50,000

demand, $2,080 energy) to $47,837 ($45,737 demand, $2101 energy). The net

effect is a $4,243, or 8.15%, reduction in the electrical bill. Note that while

the demand charge is reduced significantly, the energy bill increases due to

efficiency losses in the BESS.

2.3.2 Charge Reservoir Model (CRM)

CRMs are a class of BESS models that define capacity in units of charge

(Ah). An example CRM is shown in:

Ccap
∂ς

∂t
= ηci

+
bat + i−bat (2.3.11)
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Figure 2.7: Results calculated with the ERM: (a) Net load with BESS power
control, (b) Battery power, (c) battery SoC (bottom)

where i+bat and i−bat are the charge and discharge current respectively, ς is the

battery SoC, Ccap is the charge capacity, ηc is the coulombic efficiency, and

∂ς/∂t represents the rate of change of SoC. Like with the ERM, to conveniently

represent efficiency while avoiding non-linearity and non-convexity, charge cur-

rent and discharge current are formulated as independent variables in (2.3.11).

Simultaneous charge and discharge is avoided in the same way, by structur-

ing the objective function such that there is no advantage to those candidate

solutions.

Peukert’s equation relates the charge capacity to the discharge rate in

amps [77,78]:

Ccap = (i−bat)
kpeutdischarge (2.3.12)

where kpeu is the Peukert exponent, and tpeu discharge time before the battery
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reaches its low voltage limit. Peukert’s equation is sometimes used in control

design [79]. However, it makes several simplifying assumptions that do not

make sense for optimal control applications. The parameters of Peukert’s

equation assume a constant-current discharge, where 0% SoC corresponds to

battery reaching its minimum voltage under load. This model implies a battery

equivalent circuit, which is better to represent explicitly, and a static operating

condition (constant-current discharge) which is one of the decision variables

in our problem formulation.

While some previous work ignore efficiency losses [54–58], this may not

be accurate for controllers that predict SoC over an extended time horizon for

the same reason as discussed in Section 2.3.1. Self-discharge current can be

included in a CRM [55,65,80] as in:

Ccap
∂ς

∂t
= ηci

+
bat + i−bat + isd (2.3.13)

where isd is the self-discharge current. While less common for CRM, efficiency

in this model can be represented equivalently with Type 2 and Type 3 models

as shown in Table 2.4.

Several additional constraints are needed to govern internal relation-

ships between voltage, current, dc power, and ac power. The foundation of

these is an equivalent circuit model [62,63,81,82]. The most common battery

equivalent circuit models are shown in Fig. 2.8 and described in:

ibat = i+bat + i−bat (2.3.14a)

∂v1

∂t
=
−1

R1C1

v1 +
1

C1

ibat (2.3.14b)

∂v2

∂t
=
−1

R2C2

v2 +
1

C2

ibat (2.3.14c)

voc +R0ibat + v1 + v2 = vbat (2.3.14d)
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Figure 2.8: Equivalent Circuit Models

where R0, R1, C1, R2, and C2 are equivalent circuit resistor and capacitor

parameters. The 0th order equivalent circuit is accurate for steady state anal-

ysis as it accounts for battery ohmic resistance R0 but not any time-domain

dynamic response. The 1st and 2nd order models are increasingly accurate for

analyses requiring short time steps (roughly faster than 10 minutes between

samples or (1/600)Hz) [61]. The R-C parallel elements of the circuit can rep-

resent different chemical reaction dynamics within battery cells: R1 & C1 can

represent ion-diffusion (Warburg impedance) whereas R2 & C2 can represent

anode-cathode capacitance or constant phase element [81]. Note that the time

constant of the diffusion element (τ1 = R1C1) is generally much larger than

the time constant of the capacitance element (τ2 = R2C2). The equivalent

circuit’s impedance parameters can be calculated using least squares system

identification [83]. These parameters can be functions of current, SoC, SoH,

temperature, or any combination thereof [65].

There are many variations of these equivalent circuits. Adding a resistor

across the voltage source is equivalent to making isd a linear function of voc.

Adding a resistor across the battery terminals is equivalent to making isd a
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linear function of vbat. Several other configurations are discussed in [61], but

it is unclear how these additions affect the accuracy of the model.

Though it is rare to do so in a controller, battery voltage hysteresis can

be incorporated into the equivalent circuit model [5] as shown in:

∂vhys

∂t
= γhys sgn(ibat) (M(ς, ibat)− vhys) (2.3.15)

where vhys is the dynamic voltage hysteresis, γhys is a decay rate tuning con-

stant, and M : R2 7→ R is a function that returns the maximum voltage

hysteresis. Specifically, M(ς, ibat) is an empirical approximation based on ex-

perimental data that is positive for charge and negative for discharge. Alter-

natively, the hysteresis can be modeled using an additional charge reservoir as

in [7,8]. This approach splits the total charge capacity into two states: bound

charge, and available charge as shown in Fig. 2.9 and in:

(1− cf)Ccap
∂ς1
∂t

= Γc(ς2 − ς1) (2.3.16a)

cf Ccap
∂ς2
∂t

= ηci
+
bat + i−bat + Γc(ς1 − ς2) (2.3.16b)

where cf is the fraction of total capacity in the available reservoir, and Γc is a

time constant that governs the rate of charge transfer between the two reser-

voirs. The open-circuit-voltage is then based on the available charge level only.

This effectively represents energy recovery effect and is structurally similar to

the discrete version of the single particle model to be discussed in Section 2.3.3.

Open-circuit-voltage voc, also referred to as electromotive potential or

force, is the terminal voltage of the battery when measured ‘at-rest’ and is

a function of the SoC, SoH and temperature of the cell. Several example
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Bound Charge Available Charge

Battery

(1 − 𝑐f)𝐶max𝜍1 𝑐f 𝐶max 𝜍2
Γc

Charge Current (𝜂e𝑖bat+)

Discharge Current (𝑖bat−)

Figure 2.9: Charge Based Kinetic Battery Model [7, 8]

functions for voc are given in:

voc = vmς + v0 (2.3.17a)

voc = kT(T − Tref)(mς + v0) (2.3.17b)

voc = aς2 + bς + c (2.3.17c)

voc = ας3 + βς2 + γς + δ (2.3.17d)

voc = bk −mk
(1− ς)
ς

+ cke
dkς (2.3.17e)

voc = α(ς)ς3 + β(ς)ς2 + γ(ς)ς + δ(ς) (2.3.17f)

where vm and v0 are the slope and intercept of a linear voc model, respectively,

kT is a linear temperature adjustment, T and Tref are the battery temperature

and reference battery temperature, respectively, a, b, and c are the coefficients

for a quadratic polynomial fit, α, β, γ, and δ are the coefficients for a cubic

polynomial fit, bk, mk, ck, and dk are the coefficients for a negative recipro-

cal and exponential function fit, and α(ς), β(ς), γ(ς), and δ(ς) are piecewise

functions that collectively comprise a cubic spline. The simplest function for

voc is a linear approximation (2.3.17a) which can be accurate within a narrow

range of SoC [24, 49, 63, 84]. A temperature adjustment can also be applied

(2.3.17b) to improve accuracy [63, 80]. Polynomial approximations are also

used, (2.3.17c) or (2.3.17d), but these are sometimes non-convex and so can

45



Figure 2.10: Open-Circuit-Voltage Models

be more computationally intensive to work with. Another approach is to

model voc as a combination of a negative reciprocal and exponential functions

(2.3.17e) [85,86]. This model works better for lithium-cobalt batteries or other

chemistries with exponential curves near 100% and 0% SoC but that are rel-

atively flat and straight in a wide range around 50% SoC. Note that (2.3.17e)

has an asymptote at ς = 0, and hence the model must constrain SoC to some

positive threshold to work well. Piecewise cubic splines (2.3.17f) are the most

accurate [61], but these can be very difficult functions to work with in opti-

mization. Example open-circuit-voltage data along with different fit types are

shown in Fig. 2.10. Battery voltage hysteresis can alternatively be represented

within the open-circuit-voltage function by modeling voc differently on charge

and discharge [85].

Battery power is modeled through Ohm’s power law:

pdc = ibatvbat (2.3.18)

where pdc is the dc power.

The conversion efficiency from ac to dc power, or vice versa, is some-

times ignored. When it is modeled, conversion efficiency is commonly modeled

as a constant [42]. One way of modeling inverter efficiency as a constant is
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shown in:

pdc = φep
+ +

1

φe

p− (2.3.19)

where φe ∈ [0, 1] is the conversion efficiency constant. Alternatively, a linear

fit or quadratic fit can be used [87]:

pdc = φmp+ φb (2.3.20)

pdc = φ0p
2 + φ1p+ φ2 (2.3.21)

where φm and φb are the slope and intercept of a linear efficiency function,

respectively, and φ0 , φ1, and φ2 are the coefficients of a quadratic efficiency

function. Inverter efficiency can be a nonlinear function of ac voltage, dc

voltage, and temperature [88].

While CRMs normally include box constraints on SoC and real/reactive

power, additional box constraints on current and battery voltage are shown

in:

imin ≤ ibat ≤ imax (2.3.22a)

vmin ≤ vbat ≤ vmax (2.3.22b)

Unlike the ERM, it is not necessary to add SoC dependent power constraints

as the voltage constraints handle these limits implicitly.

An important factor to consider is that battery cells within a string may

have significantly different parameters resulting from normal manufacturing

variation. When using a CRM in a controller design, there are at least three

methods for accounting for distributions in parameters and states within a

BESS [81,89]. What follows is a discussion of these methods and their relative

advantages for optimal control.
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“Big cell” method: This method is based on a simplification that

models a battery pack as one large battery cell. In this approach, the bat-

tery voltage is the individual cell voltage multiplied by the number of cells

in series, the capacity is the total capacity and so on. Intercell balancing is

generally handled within the self-discharge current parameter. This method is

most accurate when a string is made up of very well-matched cells, which are

manufactured to have a very narrow distribution of performance. For poorly

matched cells, or for cells that have degraded and hence have widened in their

performance distribution, this approach is optimistic in its approximation of

string capacity on both charge and discharge.

“Short board effect” method: This method uses models of the

extreme cells in a string to better represent limiting factors. The maximum

SoC cell and minimum SoC cell are tracked independently, each with their

own decision variables and limits. The total string voltage is then the sum of

the highest SoC cell voltage, the lowest SoC cell voltage, and the voltage of

a “big cell” representing all remaining cells. This approach more accurately

models when the string will encounter cell voltage or SoC limits. There is some

increase in the computational complexity as there must be additional decision

variable for voltage, dynamic voltage, and SoC as well as their associated

constraint sets.

“One-by-one calculation” method: This method explicitly repre-

sents all cells in a battery pack. In cases where cells have a wide variance in

capacity and coulombic efficiency, it is possible that the highest SoC cell and/or

lowest SoC cell will switch cells within the control horizon. This method will

be able to predict and optimize operation whichever cell is the limiting factor

for a given cycle. Explicitly modeling every cell within a string also enables
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the direct representation of cell balancing circuits within the controller, as

in [89, 90]. This also enables the representation of unequal current splitting

in parallel cells or strings. With hundreds or even thousands of cells in a

grid scale BESS, this approach can easily become computationally infeasible

to apply in practice.

As CRMs account for changes in battery dynamics over the range of

voltage and current, they are more accurate than ERMs in applications where

the SoC and charge/discharge currents vary significantly. However, given the

increase in complexity, they are much more difficult to use in the design of

optimal controllers. Hence, CRMs are best used in applications relying on

long duration, if sparse, charge/discharge schedules (e.g., day-ahead hourly

energy arbitrage). In such applications the high rate battery dynamics in

(2.3.14) can often be ignored.

2.3.2.1 CRM Application

In this section we solve the problem outlined in Section 2.2 with an

optimal controller designed around a CRM. Example parameters for a CRM

are listed in Table 2.6.

The ‘CRM: no dynamic voltages’ from Table 2.2 is the most appropriate

model for this problem because of the long forecast horizon, low (15 minute)

time resolution, and because we are only controlling one battery system. We

also use the “big battery” approach to modeling the dc battery string. Imple-

menting the CRM into a usable format requires reformulating the differential

equation for SoC defined in (2.3.11) into the vector of equality constraints as
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shown in:

CcapDς =ηci
+
bat + i−bat (2.3.23)

where ς ∈ Rn+1 is the vector of SoC at each time step, i+bat ∈ Rn
+ and i−bat ∈

Rn
− are the vectors of charge and discharge dc current respectively, and D

is a matrix defined above in (2.3.9). Like with the ERM, charge current and

discharge current are formulated as separate decision variables. While this does

not make the optimization problem convex, it does improve the convergence

time of the solver (over the problem formulation with a single current decision

variable per time step) without affecting the solution. The resulting problem
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formulation is shown in:

min
xCRM∈R6n+2

∆tw>(l + p) + ντ (2.3.24a)

subject to:

pdc = φ0p
2 + φ1p + φ2 (2.3.24b)

pdc = (i+bat + i−bat)vbat (2.3.24c)

vbat = voc[1:n] +R0(i+bat + i−bat) (2.3.24d)

voc = ας3 + βς2 + γς + δ (2.3.24e)

CcapDς = ηci
+
bat + i−bat (2.3.24f)

ς[1] = ς0 (2.3.24g)

ς[1] = ς[n] (2.3.24h)

pmin[1] ≤ p ≤ pmax[1] (2.3.24i)

ςmin[1] ≤ ς ≤ ςmax[1] (2.3.24j)

vmin[1] ≤ vbat ≤ vmax[1] (2.3.24k)

imin[1] ≤ i−bat ≤ [0] (2.3.24l)

[0] ≤ i+bat ≤ imax[1] (2.3.24m)

l + p ≤ τ [1] (2.3.24n)

where xCRM = {p,pdc, ibat,vbat,voc, ς, τ} ∈ R6n+2, pdc ∈ Rn is the dc electrical

power provided to the battery, vbat ∈ Rn is the battery terminal voltage,

voc ∈ Rn+1 is the battery open-circuit-voltage, and τ is the dummy variable for

peak power. The CRM includes constraints on inverter conversion efficiency

(2.3.24b), Ohm’s law relating dc power, voltage and current (2.3.24c), the

battery equivalent circuit model (2.3.24d), and the open-circuit-voltage curve

(2.3.24e). The constraint (2.3.24g) ensures that control decisions are made

based on the current estimated SoC. The constraint (2.3.24h) represents the
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intuitive assumption that the BESS will continue to operate after the end of the

current control horizon and that the next period will be similar to this one. In

this application, (2.3.24h) is used to make simulation results easier to interpret

and compare. Again, while simultaneous charge and discharge does not violate

explicit constants, the structure of the objective ensures that solutions will

comply with complementary slackness between charge and discharge current.

The resulting customer’s net load and optimal control schedule for the

BESS are shown in Fig. 2.11 (a) and (b) respectively. The simulated battery

current and voltage are shown in Fig. 2.11 (c) and (e) respectively. The CRM

based controller expects to be able to reduce the peak load by approximately

83 kW. The peak battery voltage reached 780 V and the dc current reached

-120 A on discharge. The control solution reduces the total electrical bill from

$52,080 ($50,000 demand, $2,080 energy) to $47,948 ($45,871 demand, $2077

energy). The net effect is a $4,132, or 7.93%, reduction in the electrical bill.

If we assume that the example ERM and CRM represent the same

physical BESS, then we can investigate which one is a better controller. We can

observe that the ERM expects to be able to reduce the peak load, and the total

bill, more than the CRM. If the ERM is the more accurate model, then the

CRM will underutilize the batteries. However, if the CRM is more accurate, as

we expect it to be, then the control solution from the ERM controller may be

infeasible. This would result in suboptimal control performance and optimistic

shortfall as will be discussed in Chapter 6.

2.3.3 Concentration Based Models

Concentration based models measure capacity in units of the concen-

tration (mol/L) of the active materials of the electrodes. These models can
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Table 2.6: Battery System Charge Reservoir Model Parameters

Name Symbol Value
Charge Capacity Ccap 800 Ah
Coulombic Efficiency ηc 94.6%
Self-Discharge Current isd 0.50 A
Inverter Efficiency Coefficient φ0 -2.0503e-04
Inverter Efficiency Coefficient φ1 0.99531
Inverter Efficiency Coefficient φ2 -6.1631
Battery Internal Resistance R0 71.6 mΩ
Maximum Discharge Power pmin -500 kW
Maximum Charge Power pmax 500 kW
Maximum SoC ςmax 95%
Initial SoC ς0 60%
Minimum SoC ςmin 20%
Minimum Battery Voltage vmin 680 V
Maximum Battery Voltage vmax 820 V
Maximum Current Discharge imin -1000 A
Maximum Current Charge imax 1000 A

Cubic Poly-
nomial Fit

α β γ δ

0.2 ≤ ς ≤ 0.95 320.377 -368.742 201.004 669.282

Note: these model parameters are meant to represent a representative
battery system and do not necessarily reflect any specific equipment.
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Figure 2.11: Results calculated with the CRM: (a) net load with BESS power
control, (b) battery power, (c) battery SoC, (d) battery current, and (e) bat-
tery voltage
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Figure 2.12: Single particle model (SPM)

be further classified into single particle model (SPM), pseudo-two-dimensional

model (P2D), and many others [3]. In this section we briefly cover SPM and

P2D models as these are the concentration models most widely used in con-

trollers. Note that concentration models may require parameters based on

cell construction and chemistry that manufacturers consider proprietary and

would not be available to the controller. However, there are methods available

to estimate some or all of these parameters empirically [67,70].

SPMs represent each electrode as a single particle [66, 91–93] which is

useful for modeling the effects of transport phenomena but loses some accuracy

at high current, or wherever variations across the electrodes are significant

[30, 94]. Figure 2.12 shows an simple generic SPM. The differential equation

for mass balance in an intercalation particle is governed by Fick’s law in a

spherical coordinate system [95,96]:

∂cs,j
∂t

=
Ds,j

r2
j

∂

∂rj

(
r2
j

∂cs,j
∂rj

)
(2.3.25)

where cs,j is the concentration of electrode j as a function of both time t and

particle radius rj, Ds,j is the solid phase diffusion coefficient, and the sub-

script j ∈ {p, n} represents the positive/negative electrode. The SoC is a
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function of the average normalized concentration (stoichiometry) in each elec-

trode (2.3.26). To calculate SoC, we first define xs,j,100% and xs,j,0% as the

stoichiometry at which electrode j is at its maximum and minimum respec-

tively. Using these definitions, SoC is the state of the anode’s stoichiometry

between xs,n,100% and xs,n,0% (or equivalently, 1 - the state of the cathode’s

stoichiometry between xs,p,100% and xs,p,0%) [5] as expressed in:

xs,j,ave =
1

r̄jcs,j,max

∫ r̄j

0

cs,jdr (2.3.26)

ς =
xs,n,ave − xs,n,0%

xs,n,100% − xs,n,0%

(2.3.27)

= 1− xs,p,ave − xs,p,0%

xs,p,100% − xs,p,0%

(2.3.28)

where ς is the SoC of the cell, cs,j,max is the maximum concentrations of elec-

trode j, and r̄j is the radius of the representative particle.

Battery voltage in the SPM is based on the open circuit voltage, the

chemical overpotential, and the electrical resistance, while the SoC is based on

average concentration throughout the particle, open-circuit-voltage is based

only on its surface concentration [5]. These relationships are shown in:

voc = Φp (xs,p,surf)− Φn (xs,n,surf) (2.3.29)

xs,p,surf =
cs,p|r=r̄p
cs,p,max

(2.3.30)

xs,n,surf =
cs,n|r=r̄n
cs,n,max

(2.3.31)

where Φp : [0, 1] 7→ R and Φn : [0, 1] 7→ R are the positive and negative

electrode potentials as functions of their normalized surface concentrations

(xs,p,surf and xs,n,surf respectively). Like with open circuit voltage in the CRM,

Φp and Φn can be approximated using polynomial or exponential functions.
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Authors in [1, 5] use a Redlich-Kister expansion as a general best fit function

for Φp and Φn:

Φj = v0
bat +

RT

F
ln

(
1− xs,j,surf

xs,j,surf

)
+{

N∑
k=0

Ak
F

(
(2xs,j,surf − 1)k+1 − 2xs,j,surfk(1− xs,j,surf)

(2xs,j,surf − 1)1−k

)}
(2.3.32)

where Φj is the potential at electrode j, xs,j,surf is the normalized surface con-

centration at electrode j, R is the ideal gas constant (8.314 J mol/K), T is the

battery temperature in Kelvin2, F is Faraday’s constant 96,487 coulombs/mol,

k is the summation index number, and N , v0
bat and Ak are the fitting param-

eters. Figure 2.13 shows example anode and cathode equilibrium potential

functions. When fully charged, the active material concentration is at its

maximum in the anode and at its minimum in the cathode. This means there

is potential for ion movement from anode to cathode and electron movement

from cathode to anode (a.k.a. discharge).

Chemical overpotential can be calculated according to the Butler-Volmer

equation [5, 97, 98]:

Jj =
ibat

asAL
= kjcs,j,maxc

1−αc
e (1− xs,j,surf)

1−αcxαc
s,j,surf

×
{

exp

(
(1− αc)F

RT
ηj

)
− exp

(
−αc F
RT

ηj

)}
(2.3.33)

kj = kj,ref exp

[
Ek,j
R

(
1

T
− 1

Tref

)]
(2.3.34)

where ηj is the reaction overpotential, Jj is the current density on the particle’s

surface, as is the specific interfacial surface area (volumetric fraction of the

2Note that battery temperature can be assumed to be constant, or this can be coupled
with one of the thermal models discussed in Section 2.4
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active material × 3 / r̄j), A is the current collector area, L is the electrode

thickness, kj is the Arrhenius rate of the electrochemical reaction, Ek,j is the

activation energy of the Arrhenius relationship, ce is the concentration of the

electrolyte, and αc is the charge-transfer coefficient. This equation can be

solved for ηj in terms of ibat making it possible to compute the Jacobian

metrics with respect to the parameters as was demonstrated in [98].

Electrical resistance is a combination of resistances in the electrolyte,

the current collectors, the tabs, and the terminals. These can all be modeled

using an single constant resistor Rcell, but it is also common to apply a tem-

perature correction factor, current correction factor, or both [98]. With the

open-circuit-voltage, the chemical overpotential, and the electrical resistance

calculated, the SPM battery voltage is shown in:

vbat = Φp − Φn + ηp − ηn +Rcellibat (2.3.35)

To make this model more accurate at high currents, we can extend it to

an additional spatial dimension along the length from the anode current col-

lector, through the separator, to the cathode current collector, as illustrated

in Fig. 2.13. With one dimension along the cell’s thickness and the pseudo

dimension describing a concentration gradient within spherical particles, this

is called a pseudo-two-dimensional (P2D) model [5, 99, 100]. Whereas with

the SPM, ce, xs,j,surf, ηj, and therefore the Jj are essentially averaged over

each electrode, the P2D represents these quantities as functions of the dimen-

sion from one current-collector to the other [101]. Full order P2D built with

the partial differential equations are too computationally complex for most

real-time control applications [69]. However, discretized or reformulated P2D

models can be applied successfully in control applications [29, 69,70].
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Figure 2.13: Equilibrium potentials (open-circuit-voltages) of lithium-cobalt-
oxide (LiCO2) cathode (top) and MesoCarbon MicroBeads (MCMB) anode
(bottom) [1]

Figure 2.14: pseudo two-dimensional model (P2D)
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Figure 2.15: Concentration reservoir analogy of the SPM with five discrete
volumes per particle

2.3.3.1 SPM Application

In this section we solve the problem outlined in Section 2.2 with an

optimal controller designed around a SPM. Example parameters for the SPM

are listed in Table 2.7 with Redlich-Kister expansion parameters for the anode

and cathode voltages listed in Table 2.9. The SPM is used here to demonstrate

its application; however, it is not the most appropriate model for this problem

because of its high complexity relative to the time resolution and scale required.

This model would be more appropriate for higher sample rate applications

where voltage dynamics are more salient. Further, the model parameters used

here are derived from literature sources on cell-level design. With calculated

capacity of roughly 1.9 Ah per cell, 445 parallel cells were simulated to achieve

a comparable capacity to the CRM (800 Ah). This means that the “Big Cell”

modeling assumption extrapolates the performance of a single cell to 445×196

= 87,220 cells. One advantage of the SPM is that it enables investigation of

how changes to cell level design parameters might affect simulated system level

performance.

Within each particle we model five discrete volumes to approximate the

radial dimension of the model. The core volume is spherical with radius drj

which is surrounded by four shell volumes each with a thinness of drj. Fig.
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2.15 illustrates how electrical current is transformed to current density which

is transformed in turn to changes in the chemical concentrations within the

modeled volumes. Fick’s second law describes a concentration gradient in the

representative particle that can be approximated using discrete volumes, each

being shells around a spherical core. Each of these shells has a chemical concen-

tration capacity proportional to its volume and the maximum concentration.

The surface between each volume has a chemical resistance proportional to

the surface area and inversely proportional to the diffusion coefficient. The

current density at each particle’s surface is proportional to the battery current

(ibat). The resulting optimization problem is formulated in:

min
xSPM∈R18n+13

∆tw>(l + p) + ντ (2.3.36a)

subject to:

pdc = φ0p
2 + φ1p + φ2 (2.3.36b)

pdc = ibatvbat (2.3.36c)

vbat = Φp[1:n] −Φn[1:n] + ηp − ηn +R0ibat (2.3.36d)

Φj = v0
bat +

RT

F
ln

(
cj,max − cj,0

cj,0

)
+

N∑
k=0

Ak
F

[(
2cj,0
cj,max

− 1

)k+1

− 2cj,0k(cj,max − cs,j,0)

cj,max(2
cj,0
cj,max

− 1)1−k

]
(2.3.36e)

ibat

as,jAs,jLs,j
= ks,jcj,maxc

0.5
e (−cj,0[1:n])

0.5c0.5
j,0[1:n]

×
{

exp

(
0.5F

RT
ηj

)
− exp

(
−0.5F

RT
ηj

)}
(2.3.36f)

Vj,0Dcj,0 =
Sj,0 ibat

F as,jAs,jLs,j
−
Ds,jSj,1(cj,1[1:n] − cj,0[1:n])

dr
(2.3.36g)
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dr Vj,1
Ds,j

Dcj,1 = Sj,1(cj,0[1:n] − cj,1[1:n])+

Sj,2(cj,2[1:n] − cj,1[1:n]) (2.3.36h)

dr Vj,2
Ds,j

Dcj,2 = Sj,2(cj,1[1:n] − cj,2[1:n])+ (2.3.36i)

Sj,3(cj,3[1:n] − cj,2[1:n]) (2.3.36j)

dr Vj,3
Ds,j

Dcj,3 = Sj,3(cj,2[1:n] − cj,3[1:n])+ (2.3.36k)

Sj,4(cj,4[1:n] − cj,3[1:n]) (2.3.36l)

dr Vj,4
Ds,j

Dcj,4 = Sj,4(cj,3[1:n] − cj,4[1:n]) (2.3.36m)

cj,{0:4},[1] = cj,init[1] (2.3.36n)

cj,{0:4},[n] = cj,init[1] (2.3.36o)

pmin[1] ≤ p ≤ pmax[1] (2.3.36p)

vmin[1] ≤ vbat ≤ vmax[1] (2.3.36q)

imin[1] ≤ ibat ≤ imax[1] (2.3.36r)

[0] ≤ cj,{0:4} ≤ cj,max[1] (2.3.36s)

l + p ≤ τ [1] (2.3.36t)

where xSPM =
{
p,pdc, ibat,vbat,Φp,Φn,ηp,ηn, cp,{0:4}, cn,{0:4}, τ

}
∈ R18n+13,

Φp ∈ Rn+1 and Φn ∈ Rn+1 are the open-circuit-voltages of the cathode and

anode respectively, ηp ∈ Rn and ηn ∈ Rn are the overpotential voltages of the

cathode and anode respectively, and cp,{0:4} ∈ R5×(n+1) and cn,{0:4} ∈ R5×(n+1)

are the molar concentrations of active material in the five discretized volumes

of the cathode and anode respectively.

Under this control design customer’s net load and optimal control

schedule for the BESS are shown in Fig. 2.16 (a) and (b) respectively. The

simulated battery current and voltage are shown in Fig. 2.16 (c) and (e) re-
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spectively. The SPM based controller expects to be able to reduce the peak

load by approximately 86 kW. The peak battery voltage reached 800 V and

the dc current reached -125 A on discharge. Note that the dc voltage is based

on the anode and cathode voltage functions which are in turn based on an-

ode and cathode concentration fractions. As these functions are different from

what the CRM uses, the results are not directly comparable. As shown in Fig.

2.16 (f) and (g), the cathode concentration fraction ranges from 0.50 at peak

SoC to 0.87 at minimum SoC while the anode concentration ranges from 0.76

at peak SoC to 0.2 at minimum SoC. At low current densities there is almost

no difference between core and surface particle concentrations. The control

solution reduces the total electrical bill from $52,080 ($50,000 demand, $2,080

energy) to $47,754 ($45,682 demand, $2072 energy). The net effect is a $4,325,

or 8.31%, reduction in the electrical bill.

The SPM is structurally similar to the CRM, as illustrated in the com-

parison of Fig. 2.9 and Fig. 2.15. However, the SPM accounts for overpo-

tential voltages in a different way from the equivalent circuit models in the

CRM. These differences are not salient at the low sample rate in the example

application and hence the models appear to have very similar results.

2.4 Temperature Models

Temperature is a critical factor to consider when controlling BESS.

Cell temperature can affect many of the parameters for the SoC and SoH

models discussed in Sections 2.3 and 2.5. The highest cell temperature can be

the limiting factor for control action in hot environments or under high power

conditions. Constraining temperature prevents over-temperature and, in a few

cases, under-temperature conditions which can shorten battery life or cause
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Table 2.7: Battery System Single Particle Model (SPM) Parameters I

Name SymbolUnits Anode Cathode
Diffusion coefficienta Ds,j m2/s 3.9e-14 1.0e-14
Particle Radiusa r̄j m 12.5e-6 8.5e-6
Electrode thicknessa Ls,j m 7.35e-6 7.0e-6
Electrode area per cell a As,j m2 1.1167 0.7824
Volume fractionb εs,j m3/m3 0.49 0.59
Specific interfacial surface areaa,b as,j m2/m3 1.176e5 2.0824e5

Reaction rate constantb ks,j
A/m2√
mol/m3

8.351e-3 6.374e-3

Charge-transfer coefficienta,b αc 0.5 0.5
Maximum concentrationa,b cj,max mol/m3 3.1833e4 5.1410e4
Initial concentration (60 %SoC) cj,init mol/m3 1.5917e4 3.4445e4
100% SoC concentration cj,100% mol/m3 2.5466e4 2.3135e4
95% SoC concentration cj,95% mol/m3 2.4273e4 2.4548e4
20% SoC concentration cj,20% mol/m3 0.6366e4 4.1128e4
0% SoC concentration cj,0% mol/m3 0 5.1410e4
Volume 0 (surface) Vj,0 m3 3.9924e-15 1.2553e-15
Volume 1 Vj,1 m3 2.42164e-15 7.6144e-16
Volume 2 Vj,2 m3 1.2435e-15 3.9101e-16
Volume 3 Vj,3 m3 4.5815e-16 1.4406e-16
Volume 4 (core) Vj,4 m3 6.5450e-17 2.0580e-17
Surface Area 0 (surface) Sj,0 m2 1.9635e-9 9.0792e-10
Surface Area 1 Sj,1 m2 1.2566e-9 5.8107e-10
Surface Area 2 Sj,2 m2 7.0686e-10 3.2685e-10
Surface Area 3 Sj,3 m2 3.1416e-10 1.4527e-10
Surface Area 4 (core) Sj,4 m2 7.8540e-11 3.6317e-11

a - Ref. [98]
b - Ref. [95]
c - Calculated using method described in Ref. [5]
* Note that the actual configuration would vary by system design (e.g. 5
systems, each with 30 strings, each string with 3 cells in parallel would have
450 cells in parallel)
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Table 2.8: Battery System Single Particle Model (SPM) Parameters II

Name Symbol Units Value
Number of cells in
parallel

445

Total calculated capacityc Ccap 802.36 Ah
Electrolyte concentration a ce mol/m3 1000

Ideal gas constant R
J
mol/K

8.314

Faraday constant F C/mol 96,487

a - Ref. [98]
b - Ref. [95]
c - Calculated using method described in Ref. [5]
* Note that the actual configuration would vary by system design (e.g. 5
systems, each with 30 strings, each string with 3 cells in parallel would have
450 cells in parallel)

Table 2.9: Equilibrium Potential Redlich-Kister Expansion Parameters, repro-
duced from [1]

Parameter MCMB (anode) LiCoO2 (cathode)
N 10 7
v0
bat -1.7203 -29.614
A0 -0.35799×106 0.64832×107

A1 -0.35008×106 -0.65173×107

A2 -0.35247×106 0.65664×107

A3 -0.35692×106 -0.65787×107

A4 -0.38633×106 0.63021×107

A5 -0.35908×106 -0.50465×107

A6 -0.28794×106 0.27113×107

A7 -0.14979×106 -0.69045×106

A8 -0.39912×106

A9 -0.96172×106

A10 -0.63262×106
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Figure 2.16: Results calculated with the SPM (a) net load with BESS power
control , (b) battery power, (c) battery SoC, (d) battery current, (e) battery
voltage, (f) cathode concentration fraction, (g) anode concentration fraction
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hazards such as thermal run-away. The following constraint enforces limits on

temperature:

Tmin ≤ T ≤ Tmax (2.4.1)

where T is the battery temperature, Tmin is the minimum battery temperature,

and Tmax is the maximum battery temperature.

Battery specification sheets will often define a lower maximum charge

rate at higher temperatures [102]. This requirement would specify a condi-

tional dynamic charge limit based on if the battery temperature exceeds a

given threshold, an example of which is shown in:

imin ≤ibat ≤ imax (2.4.2a)

ibat ≤i′max (2.4.2b)

i′max =


imax if T ≤ Tthr

imax/2 if Tthr < T ≤ Tmax

0 if T > Tmax

(2.4.2c)

where i′max is a dynamic charge current limit, Tthr is the temperature threshold.

This type of constraint is non-convex and difficult to work with in optimal

control design. Alternatively, these restrictions can be implemented with affine

constraints on current as in:

m1T + b1 ≤ibat ≤ m2T + b2 (2.4.3a)

m3T + b3 ≤ibat ≤ m4T + b4 (2.4.3b)

where m1−4 and b1−4 are the slopes and intercepts of the temperature depen-

dent current constraints. Fig. 2.17 shows how the constraints in (2.4.2) and
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Figure 2.17: Notional examples of temperature dependent current limits

(2.4.3) enclose different feasible regions. This kind of limit can be imposed on

dc power instead of current [103].

Battery temperature models are based on how much heat is generated

in the cell, and how much heat is lost to the environment. As controllers

must balance accuracy with model complexity, we cannot use the high order

finite-element-models used in simulation based design, like in [104]. Instead

controller models choose a few critical temperatures to represent. Section 2.4.1

explains the physical mechanisms underlying heat generation and transfer for

batteries. Section 2.4.3 then introduces several specific modeling approaches

that can incorporate temperature into optimal control decisions. Table 2.10

shows a summary of the benefits and tradeoffs of the different temperature

models as they apply to optimal controller design.
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Table 2.10: Summary of Temperature Models
Model Type Parameters* Advantages Disadvantages References

Cell
Lumped-volume
resistive-heating
conduction-cooling

CT, R0, U

lowest compu-
tational com-
plexity, con-
vex

lowest predic-
tive accuracy

[105–107]

Cell
Internal / surface-
volumes
resistive /
overpotential-
heating
conduction /
radiation-cooling

CT, C ′T, R0, U ,
σem

low com-
putational
complexity,
convex re-
formulation,
improved ac-
curacy at high
temperature
gradients

low to moder-
ate predictive
accuracy

[64,108,109]

Cell
Multiple-internal-
volumes
resistive / overpo-
tential / entropy-
heating
conduction / radi-
ation / convection-
cooling

CT{1:K},
∆S(ς)**,
R0, U(µ∞)***,
σem

high predic-
tive acuracy,
entropy term
improves ac-
curacy at low
currents

moderate to
high com-
plexity and
computational
burden

[21, 29, 98,
108,110,111]

Enclosure
Lumped-air-volume
HVAC efficiency
cooling

CEN, UEN, Ncell

low com-
putational
complexity,
convex

low to moder-
ate predictive
accuracy

[108](in-
cludes
heater tem-
perature)

Enclosure
Lumped-air-volume
w/ heat-exchanger
HVAC efficiency /
Fan speed cooling

somewhat
higher predic-
tive accuracy

enables fan
speed con-
trol, higher
complexity,
non-convex

[21]

*All inputs, outputs, state variables and parameters presented here are in addition to those presented for the CRM, with
dynamic voltages model from Section 2.3
**The function ∆S(ς) can vary significantly with ς and depends on the specific battery chemistry. However, it is

commonly ignored (∆S = 0) or assumed to be constant ( ∂∆S
∂t

= 0).

***The heat transmittance U is a function of the thermodynamic properties of the environment and the velocity of fluid
flow over the conductive surface. Under a constant flow rate, U can be assumed to be constant.
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2.4.1 Heat Generation, Consumption, and Transfer

The temperature of the battery is a function of the rate of heat gen-

erated by the battery during operation (Jin) and the rate of heat lost to the

environment (Jout). Heat is generated or consumed by an electrochemical cell

in three ways: change in entropy, overpotential losses, and resistive heating.

Changes in entropy from the electrochemical reactions reversibly generate and

consume heat within cells. This process is referred to as reversible heat genera-

tion because the heat generated during charge or discharge is consumed during

the reverse reaction. Charging a battery can be endothermic (e.g., some types

of lithium batteries in specific ranges of SoC), or exothermic (e.g., lead-acid

batteries) [29,77,98,110–112]. When losses are considered, we reintroduce the

equivalent circuit models outlined in Section 2.3.2. Overpotential losses result

from the kinetic and mass transport aspects of the chemical recreation which

are modeled by the resistor-capacitor ladder in the 2nd order equivalent circuit.

The voltage drop across these elements are v1 and v2 respectively. Alterna-

tively, if the SPM or P2D model is used for a SoC model, the overpotential

voltages ηp and ηn can be used in place of v1 and v2. Resistive or joule heat-

ing losses result from the power dissipated to the battery’s internal resistance.

Combining these three sources of internal heat generation yields :

Jin =ibatT
∆S(ς)

nmolF
+ (v1 + v2)ibat +R0(ibat)

2 (2.4.4)

where Jin is the rate of heat generation (W ), ibat is the battery current

(A), T is battery temperature (K), ∆S is the change in entropy (∆S =

nmolF (∂voc/∂T )), nmol is the number of electrons per reaction, F is the Fara-

day constant (-1/96,485 Coulombs per electron), v1 and v2 are the dynamic
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Figure 2.18: Computed full cell ∆S from individual electrode ∆S for three
types of lithium-ion batteries, replotted with data from [9]

battery voltages from the equivalent circuit (V), R0 is the battery internal

resistance (Ω), and voc is the open-circuit-voltage (V). The total change in

entropy in a battery can change drastically as a function of SoC which can be

difficult to model for the purposes of control design. The change in entropy

over the domain of SoC was calculated from precise measurements of ∂voc/∂T

for a selection of lithium-ion battery types as shown in Fig. 2.18 [9]. From

these data we can contrast the low entropic heat generated on discharge from

lithium-iron-phosphate (LFP) batteries to the relatively high entropic heat

from lithium-cobalt-oxide (LCO), especially in the range of 10% to 40% SoC.

Lithium-manganese-oxide (LMO) batteries in further contrast change from

generating heat (negative ∆S) to consuming heat (positive ∆S) when passing

50% SoC on discharge. Depending on the battery chemistry, and the range

of operational SoC, the ∆S(ς) function may be neglected entirely, or approxi-

mated by a constant, a linear function, a quadratic function, or cubic function,

or even a cubic spline [68,113]. Accurate yet simple models for changes in en-

tropy that controllers can use to predict temperature are an underdeveloped

area that warrants additional research.
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Most of the heat generated in a cell, especially in high power appli-

cations, comes from the resistive heating term. Because of this, some choose

to ignore overpotential losses and the thermochemistry entirely [105]. Just as

with the equivalent circuit, the heat generation can be calculated with different

sets of parameters depending on if the battery is charging or discharging. How-

ever, the accuracy improvement may not warrant the increased computational

complexity.

Heat can be transferred between the battery and the environment

through conduction, radiation, and convection. Heat conduction is propor-

tional to the temperature difference while heat radiation is proportional to

the temperature of the surface raised to the 4th power according to Stefan-

Boltzmann’s law [114]. The combined heat loss function is shown in:

Jout = U(Tenv − T ) + εσem(T 4
env − T 4) (2.4.5)

where Jout is the rate of heat loss (W ), U is the battery’s thermal transmittance

with its environment (W/K), Tenv is the environmental temperature (K), ε is

the Stefan-Boltzmann constant (5.6 × 10−8 Wm−2 K−4), σem is the emission

ratio with respect to the ideal (0.95 is common for plastics in a variety of

battery designs [114]).

In an unregulated environment Tenv can be forecasted based on local

weather data. In a temperature controlled environment, it can sometimes be

assumed that Tenv is a constant. The heat transfer from radiation is normally

much smaller than then heat conduction meaning that it can be ignored in

many systems. A simplifying assumption is that the airflow rate is constant,

thereby yielding a constant U . However, in some cases variable speed fans can

be integrated into the optimal control design. Under variable airflow conditions
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the rate of heat transfer is described by Nusselt number (Nu) which itself is a

function of Reynolds number (Re) and Prandtl number (Pr). One example of

this relationship, from [2], is shown in:

Re =
ρ u∞ lmm

µ
(2.4.6a)

Nu =Cl Reθ Pr
1
3 (2.4.6b)

U =
Nu ktc

lmm

(2.4.6c)

where ρ is the fluid’s density, u∞ is the unobstructed velocity of the fluid, lmm

is the characteristic length, µ is the dynamic viscosity, Cl and θ are empirically

derived model parameters, and ktc is the thermal conductivity of the fluid.

Table 2.11 shows the thermodynamic constants associated with air and

water under standard temperature and pressure. As water has a much higher

density and thermal conductivity, some BESS designs include water cooling

systems [115]. For a cylinder in cross-flow, the characteristic length lmm equals

the diameter (18.63 mm for an 18650-type cell). The parameters Cl and θ,

shown in Table 2.12, are properties of the geometry of the fluid flow over

the battery surface and change with the Reynolds number. Together, these

material properties yield the functional relationship between air speed thermal

transmittance shown in Fig. 2.19.

The complex relationships described in (2.4.6) impact control design

in several ways. First, heat transfer rate increases with increasing fluid ve-

locity u∞. However, there are diminishing returns meaning that the marginal

improvement in heat transfer decreases with increased fluid velocity. Hence

there is likely to be an optimal, non-zero flow rate that effectively transfers heat

while not consuming too much power to move air. A fan controller can be im-

plemented to optimize battery temperature along with charge/discharge [21].
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Figure 2.19: Thermal transmittance for a 18650 battery cell in cross flow as a
function of air speed [2]

Table 2.11: Thermodynamic properties of common battery cooling fluids* [2]

Fluid ρ (kg/m2)
µ
(N·s/m2)

ktc

(W/m·K)
Pr

Air 1.1614 1.846e−5 0.0263 0.707
Water 997.0 8.55e−4 0.613 0.857

*all values reported assume atmospheric pressure and 300 Kelvin

Table 2.12: Fluid flow geometry constants for a cylinder in cross-flow [2]
Re Cl θ

0.4-4 0.989 0.330
4-40 0.911 0.385
40-4000 0.683 0.466
4000-40,000 0.193 0.618
40,000-400,000 0.027 0.805
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2.4.2 Enclosure Thermal Model

The simplest enclosure thermal model is implicit in the assumption

of constant environmental temperature. This is valid if the BESS is small

and installed in a temperature-controlled space. Temperature forecasts can

be used in environments where temperature is weather dependent. As there

is generally thermal separation between the weather dependent environment

and the environment that the batteries are operating in, we can model these

temperatures separately.

For a given BESS and environment, the heat transfer rate between the

enclosure and the environment UEN can be empirically calculated with heating

ventilation and air conditioning (HVAC) systems off, and over their range of

control. We may also consider the effect of solar heating which is proportional

to irradiance. The HVAC power draw can also be calculated under these

conditions, and the resulting functions can be included in the BESS model.

Further, an HVAC system can transfer a greater amount of heat from the

enclosure to the environment, or vice versa, than it requires in electrical energy.

The efficiency of a room air conditioner is measured in the energy efficiency

ratio (EER), which is the ratio of Btu per hour cooling to power input (W).

The EER ranges from roughly 10-20 for high efficiency units [116] which, given

that 1 Btu per hour = 0.293 watts, correlates to a energy efficiency (ηHVAC)

of 300-700%. A modified version of the heat dissipation equation for a BESS

enclosure is shown in:

JEN,out = UEN(Tenv − TEN) + εσem(T 4
env − T 4

EN)

+εσempirr − ηHVACpHVAC (2.4.7)

where UEN is the thermal transmittance between the enclosure and the envi-
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ronment, TEN is the enclosure temperature, pirr is solar irradiance, pHVAC is the

ac power load of the HVAC unit, and ηHVAC is the HVAC’s energy efficiency.

This approach assumes constant airflow and temperature in the HVAC’s heat

exchanger. By modeling the heat exchanger temperature and fan, we can

improve the controller’s accuracy predicting temperature management costs.

The expanded enclosure thermal model is shown in:

JEN,out =UEN(Tenv − TEN) + εσem(T 4
env − T 4

EN)

+ εσempirr + UEX(u∞) (TEX − TEN) (2.4.8a)

CEX

∂TEX

∂t
=UEX(u∞) (TEN − TEX)− ηHVACpHVAC (2.4.8b)

u∞ =ηfanpfan (2.4.8c)

where UEX(u∞) is the thermal transmittance between the HVAC heat ex-

changer and the air, which is a function of the airflow u∞, TEX is the heat

exchanger temperature, CEX is the heat exchanger’s heat capacity, pfan is the

fan power, and ηfan is the fan’s efficiency (m s−1 kW−1).

Many HVAC systems are controlled using thermostats, which activate

heating or cooling modes when outside a set temperature range. The simplest

thermostat implementation is shown in:

pHVAC =


pcool TEN > Thigh

0 Tlow ≤ TEN ≤ Thigh

pheat TEN < Tlow

(2.4.9a)

where pcool is the power of the HVAC when in cooling mode, pheat is the heating

power of the HVAC when in heating mode, and Thigh and Tlow are the high and

low environment temperature limits respectively. To limit the on/off cycling

frequency, the mode will often stay latched for a set duration, or until the

desired temperature is reached. However, this operational mode is recursive,
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meaning its state dynamics have path-dependence and must be modeled se-

quentially through time. This property makes recursive control modes difficult

to incorporate into a computationally efficient optimal controller design. If it

is feasible in the design of the HVAC system, HVAC power (pHVAC) and/or fan

power (pfan) can be decision variables available to the controller. This model-

ing approach enables optimal HVAC control scheduling, including pre-cooling

batteries [21] or pre-heating batteries [108] to prepare for usage later in the

control horizon.

2.4.3 Temperature Model Types

In this section we develop several increasingly complex, battery-cell

thermal models to illustrate the different options for thermal model design.

To build these models we pull together the physical mechanisms discussed

in Sections 2.4.1 and 2.4.2 into systems of constraints. The simplest, and

most widely used, model is to only represent a single temperature (often the

hottest cell), considering only resistive heating and conduction-based cooling.

An example of this type of model is shown in Fig. 2.20 and in:

CT
∂T

∂t
=R0(ibat)

2 + U(Tenv − T ) (2.4.10)

where CT is the heat capacity of the lumped-volume. In this lumped-volume

model the measurable surface temperature is assumed to be the temperature

throughout the cell [105, 106]. Note that while we have depicted the cell ge-

ometry as cylindrical, this approach works equally well for pouch or prismatic

cells. Note that when only the hottest cell is represented, imposing a low

temperature constraint is unnecessary and potentially misleading. Instead,

the low temperature limit is enforced either by battery selection at the design
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stage (i.e. picking a battery chemistry that is suitable for its environment) or

by designing a HVAC system with a thermostat that regulates environmental

temperature.

Figure 2.20: Cell thermal model w/ a lumped-volume, resistive-heating, and
conduction-cooling

Where the BESS includes an enclosure with a controllable HVAC sys-

tem, the model can include an additional state variable for the enclosure tem-

perature [108] as in Fig. 2.21 and in:

CT
∂T

∂t
=R0(ibat)

2 + U(TEN − T )

CEN

∂TEN

∂t
=Ncell (U (T − TEN)) + UEN(Tenv − TEN)

− ηHVACpHVAC (2.4.11a)

where CEN is the heat capacity of the BESS enclosure, UEN is the thermal

transmittance between the enclosure and the environment, and Ncell is the

number of cells in the enclosure. This model assumes constant or no airflow.

While temperature measurement is performed on the surface of batter-

ies it is a better practice to constrain operation based on limiting the maximum

internal temperature [64, 109]. The internal temperature can be estimated

based on the surface temperature and the battery’s operation. We can also
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Figure 2.21: Enclosure model with lumped-air-volume and HVAC efficiency
cooling

include battery over-potential heating to improve accuracy as shown in:

C ′T
∂T ′

∂t
=(v1 + v2)ibat +R0(ibat)

2 (2.4.12a)

+ U ′(T − T ′) (2.4.12b)

CT
∂T

∂t
=U ′(T ′ − T ) + U(Tenv − T )

+ εσem(T 4
env − T 4) (2.4.12c)

where C ′T is the heat capacity of the internal mass of the cell, T ′ is the internal

temperature, and U ′ is the thermal transmittance between the internal mass

to the surface. As the model now distinguishes between surface and internal

temperature, CT is now the heat capacity of the surface of the cell, T is the

surface temperature, and U is the thermal transmittance between the battery

surface and its environment. The resulting model structure is illustrated in

Fig. 2.22.

Building on this framework we can add additional internal volumes,

entropy based heating, and convection cooling as a function of air velocity as
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Figure 2.22: Cell thermal model w/ internal and surface-volumes, resistive and
overpotential heating, and conduction/radiation cooling

shown in:

C ′T1

∂T ′1
∂t

= U ′1(T ′2 − T ′1)

+ V1

(
ibatT

′
1

∆S(ς)

nmolF
+ (v1 + v2)ibat +R0(ibat)

2

)
(2.4.13a)

C ′T [2:K]

∂T ′[2:K]

∂t
= U ′[2:K](T

′
[3:K+1]) − T ′[2:K])

+ V[2:K]

(
ibatT

′
[2:K]

∆S(ς)

nmolF
+ (v1 + v2)ibat +R0(ibat)

2

)
+ U ′[1:K−1](T

′
[1:K−1] − T ′[2:K]) (2.4.13b)

CT
∂T

∂t
= U(u∞) (Tenv − T ) + U ′K(T ′K − T )

+ εσem(T 4
env − T 4) (2.4.13c)

where TT [1:K]′ are the K internal temperatures, CT [1:K]′ are each internal vol-

ume’s heat capacity, V ′[1:K] are the volumetric fractions of each internal volume

normalized to the total internal volume, and U ′[1:K] are the thermal transmit-

tances between internal volumes. Note that for notation simplicity the surface

temperature T ′K+1 = T in (2.4.13b). The resulting model structure is illus-

trated in Fig. 2.23.

To take advantage of the convection cooling term, the enclosure model

can be further developed to include fan power, air velocity, and the temper-
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Figure 2.23: Cell model with multiple-internal-
volumes, resistive/overpotential/entropy-heating, and
conduction/radiation/convection-cooling

ature of the HVAC heat-exchanger. To accomplish this, we replace Tenv with

TEN in (2.4.13c) and add the additional constraints shown in:

CEN

∂TEN

∂t
=Ncell

(
U(u∞) (T − TEN) + εσem(T 4 − T 4

EN)
)

+ UEN(Tenv − TEN) + εσEN(T 4
env − T 4

EN)

+ UEX(u∞) (TEX − TEN) (2.4.14a)

CEX

∂TEX

∂t
=UEX(u∞) (TEN − TEX)− ηHVACpHVAC (2.4.14b)

u∞ =ηfanpfan (2.4.14c)

where TEX is the heat-exchanger temperature, CEX is the heat exchanger heat

capacity, UEX(u∞) is the air velocity dependent thermal transmittance between

the air and heat-exchanger, pfan is the fan power, and ηfan is the fan efficiency.

The resulting model structure is illustrated in Fig. 2.24.

There are many useful combinations of these models. For example, a

controller may want to have a more detailed cell model and a less detailed

enclosure model or vice-versa. Alternatively, these models can be customized

to a specific cell design or enclosure architecture. The “Big cell” modeling

assumption is commonly used but the “Short-board effect” and “One-by-one

calculation” can be used in thermal modeling as well. A similar model exten-

sion to the enclosure would be to represent a finite number of internal volumes.
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Figure 2.24: Enclosure model with, lumped-air-volume, heat-exchanger tem-
perature, HVAC efficiency and fan speed based cooling

Each cell would reside within a volume and the heat transfer would only de-

pend on that volume’s temperature. Each of these options greatly increases

model complexity with unknown, perhaps limited, benefits to controller per-

formance.

2.4.3.1 Temperature Model Application

For this application we solve the optimal control problem in Section

2.2 using a thermal model. However, in this section we assess how the control

changes if it is in a very hot environment. In some regions, the temperature

can commonly reach 43.3 ◦C (110 ◦F) during the day. BESS in such an envi-

ronment are generally installed in enclosures with HVAC systems. Given this

environment, we determine an optimal control schedule for both the BESS

power and the HVAC system power using the parameters in Table 2.13. The

modified objective and constraints, in addition to those for the CRM defined
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in Section 2.3.2.1, are shown in:

min
xT∈R9n+5

∆tw>(l + p + pHVAC) + ντ (2.4.15a)

subject to:

... in addition to the constraints in (2.3.24)

l + p + pHVAC ≤ τ (2.4.15b)

CTDT = R0(ibat)
2 + U(TEN[1:n] −T[1:n]) (2.4.15c)

CENDTEN = KH(T[1:n] −TEN[1:n]) + UEN(Tenv −TEN[1:n])

− ηHVACpHVAC (2.4.15d)

T[1] = T0 (2.4.15e)

TEN[1] = T0 (2.4.15f)

T ≤ Tmax[1] (2.4.15g)

[0] ≤ pHVAC ≤ pHVAC-max[1] (2.4.15h)

where xT = {p,pdc, ibat,vbat,voc, ς,T,pHVAC,TEN, τ, } ∈ R9n+5, T ∈ Rn+1 is

the temperature of the hottest cell at each time step, TEN ∈ Rn+1 is the

enclosure temperature, and ibat ∈ Rn is the dc current. The environmental

temperature is assumed to be sinusoidal, with a period of 24 hours, a peak

of 45◦C at 3:00 pm, and a magnitude of 2.5◦C. The formal expression for the

temperature is shown in:

Tenv = 2.5 cos

(
2π∆t

24
k − 15

)
+ 42.5 ∀ k ∈ {1, 2, . . . n} (2.4.16)

where Tenv ∈ Rn is the environmental temperature at each time step.

The net load achieved over the control horizon from the combined SoC-

Thermal model is shown in Fig. 2.25 (a). The optimal control schedule cal-

culated is shown in Fig. 2.25 (b). The HVAC power schedule is shown in Fig.
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Table 2.13: Example Battery System Temperature Model Parameters

Name Symbol Value
Battery Thermal Transmittance U 0.2 W/◦C
Battery Heat Capacity CT 1.495 J/◦C
Maximum Temperature Tmax 45 ◦C
Initial Battery Temperature T0 40 ◦C
Minimum Temperature Tmin -20 ◦C
Nominal Temperature Tnom 20 ◦C
Enclosure Thermal Transmittance UEN 1 W/◦C
Enclosure Heat Capacity CEN 30 kJ/◦C
Initial Enclosure Temperature TEN0 40 ◦C
Max HVAC power pHVAC-max 100 kW
HVAC Efficiency ηHVAC 700%

Note: these model parameters are meant to represent a typical battery
system and do not necessarily reflect any specific equipment.

2.25 (d) and the environmental, battery, and enclosure temperature trajecto-

ries are shown in Fig. 2.25 (e). The controller can anticipate a period of high

temperature and pre-cool the enclosure, and hence the battery, to achieve the

desired schedule. Note also that the pre-cooling takes place during the off-peak

electricity pricing period. The magnitude and duration of the HVAC cooling

is precisely tuned such that the battery’s temperature reaches its limit (45 ◦C)

exactly at the end of the schedule. Note also that the power profile no-longer

preferentially charges during off-peak times. This is a result of the quadratic

increase in temperature from high rate charging that generates too much heat

for the system to transfer to the environment cost-effectively.

The control solution reduces the total electrical bill from $52,080 ($50,000

demand, $2,080 energy) to $48,001 ($45,871 demand, $2,130 energy). Within

the energy bill, the energy required to cool the battery accounts for $51. The
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Figure 2.25: Results from control incorporating temperature model: (a) net
load with BESS power control, (b) battery power, (c) battery SoC, (d) enclo-
sure ac power, and (e) battery, enclosure, and environmental temperatures

net effect is a $4,079 (7.83%) reduction from the baseline electrical bill, or

a $53 (0.11%) increase in the electrical bill calculated using only the CRM.

The more important comparison is that if we model battery temperature in

this environment under the control solution developed using only the CRM,

the hottest battery reaches a peak temperature of 55.6 ◦C. By incorporating

a thermal model into the controller, we can plan control actions to maintain

defined temperature limits.
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2.5 Degradation Models

As batteries age with time and use, their energy storage and supply ca-

pabilities degrade until they no-longer meet the requirements of their designed

services. When degradation is included in optimal control, it tends to rely

on empirical degradation models that abstract many of the physical processes

in favor of model simplicity. However, there are several studies that use the

SPM or a simplified P2D to incorporate physical degradation models into a

controller design [59,91,117–120].

This section first establishes definitions for state-of-health (SoH) and

how they fit into optimal control. We then introduce and assess empirical

stress factor based models for accurate degradation modeling. Linearizing and

simplifying the detailed empirical degradation model allows us to calculate sev-

eral norm-based regularization factors that efficiently incorporate degradation

into optimal control objectives. Last, we cover physical degradation models

based on intercalation stresses and two different side-reactions in lithium-ion

batteries.

We use the terminology beginning-of-life (BoL) to denote the conditions

when the battery is new, end-of-life (EoL) to denote the conditions when the

battery can no-longer reliably supply energy services, and state-of-life (SoL)

to denote the conditions, between BoL and EoL, that the battery is in at a

given state. The EoL conditions are often specified by the battery or BESS

manufacturer as a part of a warranty. Because of this lack of standardization,

SoH can be defined in many ways (e.g., based on changes in capacity [121],

resistance, round trip efficiency, etc.). We use a more general definition of SoH
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(%), represented in:

% = 1−
∣∣∣∣yBoL − ySoL

yBoL − yEoL

∣∣∣∣ (2.5.1)

where % is the SoH of the battery and y is a critical parameter for the bat-

tery to reliably supply services. In (2.5.1), SoH is defined as the ratio of a

specific parameter’s (or combination of parameters) movement from its initial

state at BoL to its final state at EoL. In this context, SoH can represent move-

ment in energy capacity (kWh), available energy (kWh), charge capacity (Ah),

available active material (e.g. through “loss-of-lithium” in mols), coulombic

efficiency (%), or internal resistance (Ω). Available energy is a combination

of available charge/discharge power, and energy capacity that is defined very

precisely in the electric vertical context [121] but analogs can be imagined

for energy storage applications as well. Using this definition, no matter what

parameter is used, and whatever the BoL and EoL conditions are specified,

% at BoL always equals 1, and % at EoL always equals 0. As we are focused

on controller design, this definition does not account for “rejuvenation” cycles

wherein lead-acid and some types of flow batteries can recover some loss of

SoH.

For the purposes of control design, we can assume that the change in

model parameters from degradation over any forward-looking control horizon

is extremely small. That is, absolute changes in parameters from degradation

happen over the course of months or even years, while controllers operate over

hours or days. For this reason, from the perspective of control design, it is

unimportant which parameter is used to calculate SoH. The rate of degrada-

tion, in contrast, can change quickly and is a critical factor in determining

optimal control. Hence, rather than modeling SoH, we model the rate of

degradation directly as a calculated variable.
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There are at least two ways to incorporate the rate of degradation

into optimal control design. The first way is to add incremental battery re-

placement/refurbishment cost in the objective [44]. The second method is

to constrain operation to a maximum degradation rate to ensure a warranty

period [42]. The following is a detailed introduction to these two methods.

When batteries reach EoL, they can be replaced with new batteries

that restore the system’s functionality to BoL conditions. In certain cases,

the old batteries can be resold/re-purposed in a new application. The net

costs predicted to be incurred at EoL, denoted by CEoL, provide a quantitative

estimate of how much the controller should weight battery degradation. The

cost incurred through battery degradation is calculated in:

fb =CEoL

∂%

∂t
= CEoL %̇ (2.5.2)

where fb is the cost of the battery degradation over a full control horizon, CEoL

is the net cost at EoL, % is the present SoH, and %̇ is the average degradation

rate over the control horizon.

As the cost incurred in (2.5.2) is the present value of a predicted future

cost, it is possible to apply a discount rate based on an assumed interest rate.

The number of compounding periods would then be estimated linearly from

the current SoH, the average rate of degradation, and an assumed compound

period, as shown in:

fb =(1 + i)−n CEoL%̇ (2.5.3a)

n =

(
1

tcomp

)
%

%̇
(2.5.3b)

where i is the interest rate, n is the number of compounding periods between

SoL and EoL, and tcomp is the duration of each compounding period. This is
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meant to illustrate only one of many methods available for discounting future

cost. It is sensible that control design using this method reflects whatever

financial structure and assumptions are used for projected EoL costs.

Alternatively, a controller can be designed to maximize value while

enforcing a designed or warranted service life. This method does not include

an additional cost term in the objective and instead includes an additional

constraint on the average rate of degradation, as shown in:

%̇ ≥ − %

Lwar − L
(2.5.4)

where Lwar is the total warranty life (e.g., 15 years), and L is the current life

(years that the BESS has been in service). Critically, the degradation rate

should be allowed to temporarily exceed the rate at which the BESS would

reach EoL before the warranted service life as this allows for periods of rest to

counterbalance period of high utilization. If this method is used, it is impor-

tant to account for how the controller should transition operation past EoL

as (2.5.4) is infeasible if L ≥ Lwar. Note that (2.5.4) can be imposed as a soft

constraint, with a slack variable subtracted from the limit and maximized in

the objective. This approach can handle infeasibility at the expense of addi-

tional decision variables, which can be helpful when more complex degradation

models are used.

A useful reformulation of this is for a manufacturer to supply a “war-

ranty life curve” as shown in Fig. 2.26. This curve has a maximum warranty

life and a function that describes how the warranty period would be shortened

based on BESS operation increasing a supplied degradation metric (e.g., cycles

as in [122]). This curve may or may not be accompanied by an equation to

calculate the degradation metric as it is often described by just a few points
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Figure 2.26: Notional example of a manufacturer supplied degradation curve
(curve value = D)

to prevent reverse engineering. The warranty life can be interpreted in the

context of control as the reciprocal of the rate of degradation, as in:

%̇ = − 1

DLwar

≥ − %

Lwar − L
(2.5.5)

where D : R 7→ R is the warranty life curve supplied by the battery or BESS

manufacturer. This formulation allows a generic warranty life curve to be

implemented as a constraint into a BESS controller.

This section outlines various models for calculating the average rate of

degradation for use in optimization. We adapt a stress factor model used for

life prediction of lithium-ion cells for use in control design. We then illustrate

how, through a series of operational assumptions, this stress factor model can

be reduced to simple norm-based regularization. Last, we introduce several

physical degradation models. Table 2.14 shows a summary of the types of

degradation models discussed in the following sections.
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Table 2.14: Summary of Degradation Models I
Model Type Parameters Advantages Disadvantages References

`1 Power
regularization1 CEoL, Lcyc,

simple convex
reformula-
tion, can be
applied to
ERM

assumptions: static cy-
cle DoD, average SoC,
cell temperature, and
time horizon

[42,44,123]

`2 Power
regularization1 CEoL, KT

simple con-
vex epigraph
reformula-
tion, can be
applied to
ERM

assumptions: static cy-
cle DoD, average SoC,
cell temperature, num-
ber of cycles, and time
horizon

`1 Current
regularization2 CEoL, Lcyc,

simple convex
reformulation

assumptions: static cy-
cle DoD, average SoC
cell temperature, and
time horizon

[59,64,84]

`2 Current
regularization2 CEoL, KT

simple con-
vex epigraph
reformulation

assumptions: static cy-
cle DoD, average SoC,
cell temperature, num-
ber of cycles, and time
horizon

[124–126]

`1 SoC
regularization1 CEoL, Kς ,

simple convex
reformulation

assumptions: static cy-
cle DoD, cell tempera-
ture, number of cycles,
and time horizon

`∞ DoD
regularization1 CEoL, KDoD

simple convex
reformulation

assumptions: static cell
temperature, and time
horizon, can only be ap-
plied accurately to one
cycle at a time.

[127]

1 Requires at least ERM SoC model from Section 2.3.1
2 Requires at least CRM SoC model from Section 2.3.2
3 Requires CRM SoC model and a temperature model from Sections 2.3 and 2.4
4 Requires at least SPM SoC model from Section 2.3.3
5 Requires SPM SoC model and a temperature model from Sections 2.3.3 and 2.4

91



Table 2.15: Summary of Degradation Models II
Model Type Parameters Advantages Disadvantages References

Rainflow
cycle-
counting
stress factor
model3

kt, kς , ςref,
kT, Tref,
kδ1, kδ2,
kδ3

accurate
predictor
of SoH, no
assumptions
about static
operating
conditions,
convex if
stress factors
are convex

must either discretize
SoC, temperature, and
current or use a sub-
gradient solver before
application in optimal
control, high computa-
tional burden, assumes
operational windows for
DoD, SoC, and temper-
ature

[21, 65,
127–133]

SEI layer
formation
model5

nSEI, kSEI,
DSEI,
MSEI, ρSEI,
As,n

physical
salience, ac-
counts for
accelerated
degrada-
tion from
increased
temperature

difficult to isolate from
other physical degrada-
tion mechanisms, only
applies to lithium based
battery chemistries

[59, 117,
134–136]

Lithium-
plaiting
model4

Φsr, Rfilm,
ksr, αsr,
Cl.p.,
Ll.p.,EoL

physical
salience, can
be avoided
entirely by
constraining
ηsr ≥ 0

difficult to isolate from
other physical degra-
dation mechanisms,
not accurate model for
degradation in perfor-
mance if used on its
own, only applies to
lithium based battery
chemistries

[91,118]

Intercalation
stress model4

Ωn, En,
vpoi,
Lstress,EoL

physical
salience,
applies to
many battery
chemistries

difficult to isolate from
other physical degrada-
tion mechanisms, added
complexity is propor-
tional to number of par-
ticle volumes modeled
in the SPM or P2D

[119, 120,
137,138]

1 Requires at least ERM SoC model from Section 2.3.1
2 Requires at least CRM SoC model from Section 2.3.2
3 Requires CRM SoC model and a temperature model from Sections 2.3 and 2.4
4 Requires at least SPM SoC model from Section 2.3.3
5 Requires SPM SoC model and a temperature model from Sections 2.3.3 and 2.492



2.5.1 Empirical Degradation Models

Empirical battery degradation models can be classified as either cal-

endar aging or cycle aging, with total degradation being the superposition of

the two [139]. Calendar aging models are functions of time, average SoC, and

average temperature and impact SoH whether or not the battery is charged

or discharged. Cycle aging models are based on cycle SoC, current, cycle

depth-of-discharge (DoD), and cycle temperature. Models based on current

(or C-rate), such as the models presented in [140] and [141], generally work best

for constant current cycling performed in laboratory experiments and have un-

known accuracy in application that require variable charge or discharge rates.

It is common to represent degradation based on an exponential decay

function of calendar and cycle degradation [128], as shown in:

% =e−fd (2.5.6)

where fd is the aggregate degradation stress factor based on a combination

of calendar life stress factors, and cycle life stress factors. We can model the

value of the aggregate degradation stress factor as an additional variable in

our system representation.

A rainflow cycle counting algorithm originally developed for material

degradation [142] is widely used for accurate cycle-life modeling [65,129,130]:

fd =St Sς ST +
N∑
i=1

wiSδ Sς ST (2.5.7)

where N is the number of cycles in the control horizon, i is a cycle index

variable, wi is a binary variable indicating a full cycle or a partial cycle, and
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each stress factor is shown in:

St =kt t (2.5.8)

Sς =ekς(ς−ςref) (2.5.9)

ST =ekT(T−Tref)
Tref
T (2.5.10)

Sδ =a δ4 + b δ3 + c δ2 + d δ + e (2.5.11)

where t is time, St is the time stress factor, ς is SoC, Sς is the SoC stress factor,

T is temperature, ST is the temperature stress factor, δ is DoD, and Sδ is the

DoD stress factor. The parameters Tref, ςref, kt, kς , kT, a, b, c, d, and e enable

their associated stress factors to be tuned to specific batteries. Degradation

models that do not use rainflow cycle counting often make duty-cycle profile

assumptions such as in [143,144].

Here we could extend the short board and cell-by-cell modeling ap-

proaches introduced in Section 2.3.2 to the distribution of degradation rates

within a battery string or pack. However, from a control perspective, repre-

senting the maximum and minimum SoH in a string is less critical than for

either SoC or Temperature because particularly low SoH cells can be replaced

during regular maintenance, and hence would not limit operation. For this

reason, the “big cell” representation of string level degradation is generally

the most appropriate for optimal control applications.

As the controller objective is to minimize the change in SoH, we can

take the derivative of (2.5.6) to obtain:

%̇ =− ∂fd
∂t

e−fd = −kt Sς ST e
−fd (2.5.12)

yielding the form of SoH used in a controller model. Modeling SoH in this way

presents a fundamental challenge. The rainflow counting algorithm in (2.5.7)
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is recursive in that, under most conditions, we cannot determine the number or

time of each cycle within an schedule. When performing a rainflow counting

algorithm on a known schedule, the schedule is broken into many smaller

pieces that add up to the total degradation. However, this schedule splitting

cannot be done a priori and hence is very difficult for optimization algorithms

to work with. We discuss three imperfect workarounds and one apparent

solution to this problem. First, there are some cases where the time windows

for each cycle are predetermined (e.g., daily cycling). This makes the rainflow

counting algorithm trivially simple and easy to implement in optimization.

However, under some circumstances, the optimal solution, assuming only one

cycle, yields two or more cycles. Similarly, the optimal solution assuming

two cycles can often yield an optimal schedule that includes just one cycle,

or cycles with different boundaries than expected. The second approach is to

discretize the control schedule as demonstrated in [122,131]. By breaking the

available range of SoC and current into a number of discrete states it allows the

controller to map each state transition onto a piecewise linearized degradation

curve. This approach has the benefit of accuracy of the degradation function

at the cost of precision of the control solution and computation time. The

third workaround is to linearize the degradation rate around assumed static

operational conditions, including cycles. Doing this, it can be found that

the rate of degradation can be written in the form of a regularization term.

This third approach is discussed in the following section. Lastly, an apparent

solution is presented by Shi et al, who first prove the convexity of the rainflow

counting algorithm and then demonstrate a subgradient algorithm for efficient

optimal control [132]. This method works by recognizing that every charge

(and discharge) action belongs to either one charge half cycle or two charge

half cycles if it is at the time boundary between two cycles. The cost of a
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charge action at the boundary can be mapped from the cycle depth of either

of its member half cycles. Hence the subgradient algorithm can avoid the

calculation of the number of cycles entirely, instead adding the cost associated

with the member half cycle to the subgradient of the charge action.

2.5.1.1 Degradation as Regularization

In machine learning, regularization is commonly used to prevent a

model from overfitting data. Here we use similar methods to prevent our

controller from over-using batteries. In this section we derive several differ-

ent kinds of regularization terms based on the stress factors described above.

While most of the degradation stress factors are nonlinear functions, their

first-order Taylor series approximations can be reformulated as the norms of

specific decision variables.

The simplest approach to calculating the rate of degradation (%̇) is to

linearize it to an assumed cycle depth-of-discharge, temperature, and average

SoC. Under these assumptions, the degradation rate can be written:

%̇ =
|pe|

(1 + 1
ηe

)LcycQcap

(2.5.13)

%̇ =
|ibat|

(1 + 1
ηc

)LcycCcap

(2.5.14)

where p is BESS ac real power, ibat is the battery current, ηc is the coulombic

efficiency, Lcyc is the rated cycle-life to EoL, Qcap is the energy capacity, and

Ccap is the charge capacity. Under these narrow conditions, degradation is

proportional to the absolute value of the battery power as shown in (2.5.13)

when using the ERM [42, 44, 123, 145] or to the absolute value of the battery

current as shown in (2.5.14) when using the CRM [59, 84]. A modification
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to this approach is to establish a power or current threshold above which

the linear cost increases as in [47]. Another modification is to multiply the

absolute value of power or current by a stress factor based on temperature

and charge/discharge rate as in [64, 123]. Note that, when adding (2.5.13)

or (2.5.14) up over a discrete control horizon, this form of degradation is

equivalent to applying a `1 norm power regularization, or `1 norm current

regularization, as shown in:

fb(p) = Πcyc ||p||1 (2.5.15a)

Πcyc =
∆tCEoL

(1 + 1
ηe

)LcycQcap

(2.5.15b)

fb(ibat) = Πcyc ||ibat||1 (2.5.16a)

Πcyc =
∆tCEoL

(1 + 1
ηc

)LcycCcap

(2.5.16b)

The regularization weight Πcyc has units of $/kW or $/A depending on which

equation it is in because of the units of the relevant decision variable.

At an assumed static temperature, the derivative of degradation rate

with respect to temperature is constant (KT) as shown in (2.5.17). Ignoring the

reversible heat generation, overpotential heating, and assuming that battery

temperature and environmental temperature are very close, the derivative of

temperature in (2.4.10) reduces to simply the resistive heating term, as in:

KT =
∂2%

∂T ∂t
=

∂

∂T

(
−ḟd e

−fd
) ∣∣∣∣∣∣∣∣

T=T0

t=t0

δ=δ0

ς=ς0

(2.5.17)

∂T

∂t
=
R0

CT

i2bat (2.5.18)
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where KT is the partial derivative of degradation rate with respect to tem-

perature, T is the battery temperature, t is time, R0 is the battery ohmic

resistance, and CT is the battery’s total heat capacity. From (2.5.17) and

(2.5.18), we obtain the second derivative of degradation:

%̈ =
KTR0

CT

i2bat (2.5.19)

Assuming piecewise constant values for current, integrating (2.5.19)

yields an approximation of the average degradation rate:

%̇ ≈∆tKTR0

CT

||ibat||22 (2.5.20)

Again note that, when added up over the control horizon, this form of

degradation is equivalent to applying a `2 norm-squared current regularization

to the objective function as shown in:

fb(ibat) = ΠT ||ibat||22 (2.5.21a)

ΠT =
∆t2CEoLKTR0

CT

(2.5.21b)

where the regularization weight ΠT in this equation has units of $/A2. This

form of degradation cost has been used in [124–126] to minimize heat genera-

tion in hybrid vehicle energy management optimization.

Further, assuming a constant battery voltage (vbat = v0), (2.5.21) can

be reformulated using ac power instead of dc current. Assuming the ac/dc

conversion model in (2.3.20), with φb = 0, the minimum heat generation

regularization is shown in:

fb(p) = ΠT ||p||22 (2.5.22a)

ΠT =
∆t2CEoLKTR0φ

2
m

CTv0

(2.5.22b)
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where the regularization weight ΠT in this equation has units of $/kW 2.

At an assumed static average SoC (ςavg), the the derivative of the degra-

dation rate with respect to average SoC is constant, as shown in:

ςavg =
||ς||1
n

(2.5.23)

Kς =
d2%

dςavg dt
=

∂

∂ςavg

(
−ḟd e

−fd
) ∣∣∣∣∣∣∣∣

T=T0

t=t0

δ=δ0

ς=ς0

(2.5.24)

where Kς is the partial derivative of degradation rate with respect to SoC, ςavg

is the average SoC, and n is the number of steps in the discrete control horizon.

Multiplying both sides by ∂ςavg and, assuming piecewise constant values for

SoC, integrating yields an approximation for the average degradation rate:

%̇ ≈ Kς

n
||ς||1 (2.5.25)

This form of degradation is equivalent to applying a `1 norm SoC reg-

ularization to the objective function as shown in:

fb(ς) = Πς ||ς||1 (2.5.26a)

Πς =
∆tCEoLKς

n
(2.5.26b)

where the regularization weight Πς in this equation has units of $/(%SoC).

At an assumed static cycle DoD, the derivative of degradation rate with

respect to DoD is constant, as shown in:

δ = max(ς)−min(ς) = ||ς||∞ + ||1− ς||∞ − 1 (2.5.27)

KDoD =
∂2%

∂δ ∂t
=

∂

∂δ

(
−ḟd e

−fd
) ∣∣∣∣∣∣∣∣

T=T0

t=t0

δ=δ0

ς=ς0

(2.5.28)

99



where KDoD is the partial derivative of degradation rate with respect to DoD,

and δ is the DoD. Multiplying both sides by ∂δ and, assuming piecewise con-

stant values for SoC, integrating yields an approximation for the average degra-

dation rate:

%̇ ≈ KDoDδ = KDoD (||ς||∞ + ||1− ς||∞ − 1) (2.5.29)

This form of degradation is equivalent to applying an `∞ norm ς and

1− ς regularization to the objective function as shown in:

fb(ς) = ΠDoD (||ς||∞ + ||1− ς||∞) (2.5.30a)

ΠDoD = CEoLKDoD (2.5.30b)

Note that the −1 can be omitted from ςDoD in this formulation because,

as a constant, it would not affect the minimizers of the optimization. This

degradation cost has been applied to BESS in a daily energy market arbitrage

application [127]. The regularization weight ΠDoD in this equation has units of

$/(%DoD).

Now that the partial derivatives have each been derived, we can combine

them to yield a function for total degradation. As the current based cycle-

counting and heat-generation degradation functions require fewer assumptions

than their ac power based counterparts, we use (2.5.16) and (2.5.21) instead of

(2.5.15) and (2.5.22) though either option produces a viable estimate of total

degradation. The formulation for linearized total degradation cost is shown

in:

fb(ibat, ς) =Πcyc ||ibat||1 + ΠT ||ibat||22 + Πς ||ς||1
+ ΠDoD (||ς||∞ + ||1− ς||∞) (2.5.31)
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2.5.2 Physical Degradation Models

Physical degradation models have already been reviewed in [95, 146,

147]. These models are built on top of the concentration-based SoC model

type discussed in Section 2.3.3. As with empirical models, physical degrada-

tion models can emphasize calendar aging [148] or cycle aging [149]. However,

a better classification is to distinguish models that focus on chemical side-

reactions [136,148–152] or material fatigue [119,138]. Rather than duplicating

a review of all the models available, the rest of this section analyzes the nar-

rower intersection between physical degradation modeling and optimal control.

In lithium-ion batteries, which are the primary focus of research on

degradation mechanisms, the formation of the solid electrolyte interphase

(SEI) layer both increases resistance and reduces the available lithium re-

sulting in both power and capacity fade [117]. The current density of the

side-reaction that leads to the growth of the SEI layer [59, 134, 135] is shown

in:

JSEI =
exp

(
− F
RT
ηn
)

1

nSEI FkSEI exp
(

nSEI F

RT
(Φn−0.4)

) − δSEI

nSEI F DSEI

(2.5.32)

where JSEI is the SEI side-reaction current density, F is Faraday’s constant,

R is the ideal gas constant, T is the battery temperature, ηn is the negative

electrode overpotential, nSEI is the number of electrons in the SEI side-reaction,

kSEI is the chemical rate constant of the SEI side-reaction, Φn is the open circuit

voltage of the negative electrode, δSEI is the thickness of the SEI layer, and

DSEI is the diffusion coefficient of lithium in the SEI layer.

If power is the critical parameter for operation, then we use the growth

in the thickness of the SEI layer to calculate the rate of change in SoH as
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shown in:

∂δSEI

∂t
=

JSEIMSEI

nSEI FρSEI

(2.5.33a)

%SEI = 1− δSEI

δSEI,EoL

(2.5.33b)

whereMSEI is the molar volume of SEI reaction products,and ρSEI is the density

of the SEI layer. It should be noted that there are many other ways of modeling

the growth of the SEI layer [136].

If capacity is the critical parameter for operation, then we use the loss-

of-lithium to calculate the rate of change in SoH as shown in:

∂LSEI

∂t
= JSEI As,n (2.5.34a)

%SEI = 1− LSEI

LSEI,EoL

(2.5.34b)

where LSEI is the lost lithium content, and As,n area of the negative electrode.

Another side-reaction to consider is lithium-plating, which can occur

under adverse charging conditions or as a result of accidental overcharge [91,

118]. In this case, the rate of change in SoH can be calculated as the magnitude

of the side-reaction over-potential if it is negative as shown in:

ηsr =φ1,n − φ2,n − Φsr − F JsrRfilm (2.5.35)

Jsr =ksr(xs,n,surf)
αsr (2.5.36)

×
{

exp

(
(1− αsr)F

RT
ηsr

)
− exp

(
−αsr F

RT
ηsr

)}
(2.5.37)

∂Ll.p.

∂t
=Cl.p.|min(ηsr, 0)| (2.5.38)

where ηsr is the side-reaction overpotential, φ1,n is the solid-phase potential,

φ2,n is the solution-phase potential, ηn is the anode overpotential, calculated
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using the Butler-Volmer equation (2.3.33), Φsr is the side reaction reference

voltage, which can be conservatively estimated to be zero in this case [91,118],

Jsr is the side-reaction current density, Rfilm is the lithium metal film resis-

tance, ksr is the side-reaction rate constant xs,n,surf is the surface concentration

of lithium divided by the maximum concentration, αsr is the side-reaction

transfer coefficient, Cl.p. is the ratio between negative magnitude of ηsr and

the quantity of lithium-plaiting, Ll.p. is a quantitative measure of the accu-

mulated lithium plaiting, and Ll.p.,EoL is the lithium-plaiting limit at EoL.

Authors in [91] simplify this by assuming that Rfilm is zero, meaning that

ηsr = ηn − Φn. Alternatively, a controller can be configured to prevent this

side-reaction entirely by constraining ηsr to be non-negative as shown in:

ηsr ≥ 0 (2.5.39)

A controller can be designed to minimize intercalation-induced fatigue

[119, 120]. Intercalation-induced fatigue occurs in many battery chemistries,

including lithium-ion, and so this mechanism is more general than the side-

reactions discussed above. The radial and tangential intercalation stresses in

103



a spherical partial can be calculated as shown in:

3σr(r)(
ΩnEncn,max

(1−vpoi)

) =

2

3

(∫ 1

0

xs,n(r)r2dr − 1

r3

∫ r

0

xs,n(r)r2dr

)
(2.5.40a)

3σt(r)(
ΩnEncn,max

(1−vpoi)

) =

2

(∫ 1

0

xs,n(r)r2dr +
1

r3

∫ r

0

xs,n(r)r2dr − xs,n(r)

)
(2.5.40b)

∂Lstress

∂t
= max

r∈[0,r̄n]
{σr(r), σt(r)} (2.5.40c)

%stress = 1− Lstress

Lstress,EoL

(2.5.40d)

where σr is the radial intercalation stress, σt is the tangential intercalation

stress, cn,max is the maximum concentration of lithium in the negative elec-

trode, Ωn is the partial molar volume, En is Young’s modulus, vpoi is Poisson’s

ratio, xs,n is the normalized concentration in the negative electrode, r is the

radial distance, Lstress is the accumulated stress, and Lstress,EoL is the accumu-

lated stress limit at EoL.

It can be difficult to know how these physical degradation mechanisms

combine. Each have been shown to be accurate on their own, meaning that

simply adding them would overestimate the rate of degradation. One method

is to calculate a weighted combination of degradation factors as shown in:

%̇ =
α%%̇stress + β%%̇stress + γ%%̇stress

α% + β% + γ%
(2.5.41)

where α%, β%, and γ% are unitless weights selected to linearly combine phys-

ical degradation mechanisms. However, degradation clearly does not follow

simple superposition (e.g. intercalation stress and loss of lithium may have
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compounding effects) so this simplistic combination may be inaccurate. We

are not aware of any experimental methods for isolating the effects of different

physical degradation mechanisms and so selecting weights to combine them

may be misleading.

2.5.3 Degradation Model Application

For this application we solve the optimal control problem in Section

2.2 while incorporating the stress-factor degradation model with parameters

listed in Table 2.16.

The rainflow, static-cycle model is the most appropriate for this prob-

lem given that there is one-cycle that takes the whole day, and a low time

resolution so low computational burden. The modified objective and con-

straints, in addition to those for the CRM and temperature models defined in

Sections 2.3.2.1 and 2.4.3.1, are shown in:

min
xH∈R9n+12

∆tw>(l + p + pHVAC) + ντ + CEoL%̇ (2.5.42a)

subject to:

... in addition to the constraints in (2.3.24) and (2.4.15)

%̇ = −kt Sς ST e
−fd (2.5.42b)

fd = St Sς ST + Sδ Sς ST (2.5.42c)

St = kt n∆t (2.5.42d)

Sς = ekς(
||ς||1

n
−ςref) (2.5.42e)

ST = e
kT(||T||1−Tref)

Tref
||T||1 (2.5.42f)

δ = max(ς)−min(ς) (2.5.42g)

Sδ = a δ4 + b δ3 + c δ2 + d δ + e (2.5.42h)
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where xH = {p,pdc, ibat,vbat,voc, ς, τ,pHVAC,T,TEN, %̇, fd, St, Sς , ST, δ, Sδ, } ∈

R9n+12, %̇ ∈ R is the rate of degradation, fd ∈ R is the degradation forcing

function, St ∈ R is the time stress-factor, Sς ∈ R is the SoC stress-factor,

ST ∈ R is the temperature stress-factor, δ ∈ R is the cycle depth-of-discharge

(DoD), and Sδ ∈ R is the DoD stress-factor.

The net load achieved using the combined SoC-Thermal-Degradation

model is shown in Fig. 2.27 (a). The optimal control schedule calculated over

the control horizon is shown in Fig. 2.27 (b). Observe that the period of

high HVAC power in Fig. 2.27 (d), compared to the solution using only the

SoC-Temperature model, simply shifts to the beginning of the control horizon.

The resulting environmental, battery, and enclosure temperature trajectories

are shown in Fig. 2.27 (e).

The control solution reduces the total electrical bill from $52,080 ($50,000

demand, $2,080 energy) to $48,006 ($45,871 demand, $2,135 energy). Within

the energy bill, the energy required to cool the battery accounts for $56. The

net effect is a $4074 (7.82%) reduction from the baseline electrical bill, or

a $5 (0.01%) increase in the electrical bill calculated using only the charge

and temperature models. The cost of degradation was reduced from $209,

calculated by applying the degradation model to the schedule derived from

the SoC-Temperature model application in Section 2.4.3.1, to $111 from this

schedule (a 47% reduction in estimated degradation rate). Further, when com-

pared to the solution calculated using only the SoC model in Section 2.3.2.1,

the cost of degradation was reduced from $897 to $111 (an 88% reduction).

Again, these results are highly conditional based on the specific BESS param-

eters. This analysis demonstrates that even small changes in control actions

can have large impacts on the rate of degradation.
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Table 2.16: Example battery system degradation model parameters

Name Symbol Value
Thermal Degradation Constant kT 0.0693
Time Degradation Constant kt 1.49e-6
SoC Degradation Constant kς 1.04
Reference SoC ςref 50%
Reference Temperature Tref 25%
EoL Cost Assumed CEoL -$800,000
Regularization weight Π 1e-5

Polynomial Fit a b c d e

DoD Stress Factor 5.7905 -6.8292 3.3209
5.3696
e-01

6.1638
e-02

Note: The parameters in [128] were used as a basis for the representative
BESS presented here. The model parameters were modified to for use in
Pyomo (in the case of the DoD Stress Factor being a polynomial), and to
more clearly demonstrate the effect of degradation on controller action (in
the case of kT and kς). The DoD Stress Factor has be multiplied by five to
represent a battery cell type with 1/5 the cycle life.
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Figure 2.27: Results from control incorporating a degradation model: (a) net
load with BESS power control, (b) battery power, (c) battery SoC, (d) enclo-
sure ac power, and (e) battery, enclosure, and environmental temperatures

108



2.6 Discussion

Section 2.3 introduced several varieties of models for BESS SoC, with

the primary classification distinguishing energy based models, charge based

models, and concentration-based models. By applying all three to the same

problem we can identify several differences in how controllers might work dif-

ferently when operating with each type. Contrasting Fig. 2.7 and 2.11, we

can observe that by accounting for the change in battery voltage, the CRM

steadily increases power as SoC increases. The ERM does not model voltage

and hence is imprecise in its estimates for how much power is needed to charge

or available for discharge. In general, the ERM is best for use in large scale

systems where a more detailed model would be impractical (e.g. centralized

control of 1000’s of individual BESS) or in very short duration problems that

are insensitive to changes in voltage. The CRM and SPM are mathematically

similar in structure, in that they both require empirical open-circuit-voltage

functions and several internal storage elements in the form of either a equiv-

alent circuit model or a partial concentration model. The CRM tends to

simplify or combine many of the nuances of SPM type models, such as only

using a single open-circuit-voltage function as opposed to one for the cathode

and another for the anode. The SPM has the advantage of the ability to incor-

porate the physical degradation models, while the ERM and CRM must rely

on empirical degradation models. To give a sense for the relative complexity

of the model types, the minimal ERM has 3n + 2 decision variables (were n

is the number of time-steps), the minimal CRM has 6n + 2, and the minimal

SPM has 18n + 13. Further, the ERM is convex, while the CRM and SPM

have several non-convex constraints.

In Section 2.4 we introduce three cell temperature models and two en-
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closure temperature models. The primary difference between the cell models

is what heating and cooling mechanisms are considered, with another distinc-

tion being how many internal volumes are modeled. The enclosure models

generally rely on an assumption of well-mixed air but can be classified based

on how precisely they represent the HVAC system. As was demonstrated in

the application section, by including the HVAC system in the control design

the batteries can be pre-cooled to have maximum temperature margin dur-

ing peak discharge when significant heat is being generated. Not accounting

for temperature in control actions can lead to over-temperature shutdown or

curtailment during peak times when the battery is needed most.

Lastly, Section 2.5 introduces several models to incorporate battery

degradation into control decisions. Including degradation allows for charge/discharge

to be balanced against how much the increase in use also accelerates degrada-

tion. A wide range of empirical degradation models is available that can be

used on their own or in combinations to consider many different underlying

mechanisms. Physical degradation mechanisms are less widely used but offer

the potential to reduce the uncertainty of degradation modeling. Also, it can

be observed from Fig. 2.27 that modeling the HVAC system and degradation

together can have compounding benefits to prolonging battery life. Not ac-

counting for degradation in control design allows batteries to operate in ways

that could lead to premature EoL conditions. The following is a discussion of

the gaps identified in the current state-of-the-art in models for optimal control

of battery energy storage.
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2.6.1 Gap Identification

This chapter has focused on providing guidance for how and where to

use different types of battery models for optimal control. In this section we

take a broader perspective to understand the state-of-the-art more generally

and identify opportunities for advancement.

Real-world Data

There is a significant deficit of operational performance data in stud-

ies on optimal control of battery energy storage. This results in many of the

modeling assumptions that proposed controllers are based on having gone un-

challenged. This gap emphasizes the importance of systematic data collection

and publication in BESS demonstration projects.

Control of large-scale parallel and series combinations of batteries

The ‘big-cell’ assumption is widely used to reduce the complexity of a

large battery system to a manageable level. However, we do not know at what

point the uncertainty of cell-to-cell variations outweighs the uncertainty from

other modeling assumptions. Using a simpler model, with more representative

cells, may yield better performance at a lower complexity than a highly precise

battery model that assumes all cells behave the same. This trade-off is poorly

understood even though it could greatly impact BESS performance.

Risk-averse and robust control

While there exists a large body of experimental work quantifying the

uncertainty of the different model types, this uncertainty is rarely incorporated

into the battery controller design. Even many controllers that consider the

uncertainty of renewable power, through risk-averse or robust control, fail to
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consider the uncertainty of the battery model’s, implicitly assuming them to

be deterministic systems.

Nonlinear ERM

Nonlinear system dynamics can be integrated into ERM used in con-

troller design to improve model accuracy. The degree to which this improved

model accuracy improves optimal control is an under-explored branch of re-

search.

Voltage hysteresis in control

The path dependence of open circuit voltage can be a large contributor

to error in SoC models. However, few controller designs consider hysteresis in

their equivalent circuit, or solid-electrolyte interface voltage models. As these

models are already nonlinear, and the optimal control problems are already

non-convex, adding hysteresis should have minimal impact on computation

time.

Entropy in thermal modeling

The electrochemical reaction in batteries can be exothermic or en-

dothermic, depending on the specific chemistry and the SoC. While this con-

cept is well understood in battery simulation, it is rare in optimal control.

Incorporating the entropy-based heat generation and consumption into con-

trollers could greatly reduce optimistic shortfall in many applications.

Comparative analysis of empirical degradation stress

factors

Battery degradation is a complex phenomenon to research. Cycling

studies try and isolate the stress factors that accelerate aging, but many of

these factors either can’t be isolated or have nonlinear effects when combined
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with others. For example, charge/discharge current generates heat and leads

to higher temperatures. A cycling study cannot fully isolate these variables

because they are interlinked. Further, if battery degradation is a nonlinear

function of both current and temperature, then a stress factor model that as-

sumes independence will be inaccurate. The current direction of research on

degradation models improves accuracy with increasing complexity, but con-

trollers require computational efficiency and hence can make limited use of

these improved methods. Research is needed to improve the accuracy of stress

factor models that are simple enough to be incorporated into on-board con-

trollers.

The literature intersecting battery energy storage modeling and opti-

mal control is primarily simulation based with very little work that includes

experimental analysis or real-world application. This is a natural result of the

combination of battery energy storage technologies having tremendous poten-

tial to change grid operation, and only recently coming down in cost enough

to the point where demonstration projects can proliferate. This means that

there is significant academic interest while there are relatively few operational

systems. A result of this lack of data is that there is little understanding of

the impact of modeling assumptions on the design of controllers. Most of the

gaps identified in the state-of-the-art stem from this lack of understanding.

The remaining gaps can be summarized as an underdeveloped optimization

framework. Stochastic optimization methods have been widely used in opera-

tion research to incorporate uncertainty into the optimization problem. This

mathematical background has been underutilized in BESS controller design.

With more data will come improvements in the understanding of uncertainty

which can, in turn, be incorporated into optimal control approaches to achieve
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risk averse or robust control.

Broadly speaking, the field on optimal control of BESS is still nascent

when compared to the markets and control systems for thermal generation

systems. The most commonly used models (ERM) are a simplistic approxi-

mation of extremely complicated electrochemical systems. If we are to learn

from the historical course of optimization of thermal generation, we can un-

derstand that simplistic models are normal at this stage of development. We

may expect that these models will become more developed and accurate as

time progresses, leading to greater utilization of BESS to supply services on

the grid. Additionally, we might also expect that the models used to opti-

mize energy storage within markets will be more abstract than the models

used by individual systems to optimize their operation. Navigating the bal-

ance between the applications that desire model simplicity and applications

that desire model accuracy will require ongoing research, especially given the

accelerated pace of battery energy storage technology development.

2.7 Summary

The choice of what model to use is critical in the design of optimal

controllers for any physical system. This is especially true for electrochemical

energy storage as we have shown the wide range of physical mechanisms that

impact batteries during operation. Understanding the assumptions that are

implicit in the choice of battery models will help engineers and researchers to

improve the design of optimal controllers in BESS serving the electric grid.

This chapter thoroughly reviews battery models used for optimal con-

trol of BESS. We identify three broad types of SoC models: energy reser-

voir models (ERMs), charge reservoir models (CRMs), and concentration-
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based models that include both single partial models (SPMs) and pseudo two-

dimensional (P2D) models. ERMs are computationally efficient and hence

are more appropriate for the optimization of large fleets of BESS. However,

ERMs can be inaccurate over wide operational ranges. CRMs, in contrast,

are more computationally intensive but have the potential for better accuracy.

An under-explored middle ground for these is a nonlinear ERM, that may pro-

vide improved accuracy with a modest increase in computational complexity.

Concentration based models are significantly more complex than either ERM

or CRM and include many parameters that may be considered proprietary

by a battery manufacturer. As the concentration-based SPM has a similar

mathematical structure to the CRM, it is unclear how much this increase in

complexity yields increased predictive accuracy. The SPM has the distinct ad-

vantage of enabling the application of physical degradation models that may

reduce modeling uncertainty.

When battery temperature can limit BESS control actions, it is im-

portant to include a temperature model in the controller. Heat is generated

in a battery from joule heating, over potential heating, and thermodynamic

entropy. While the impact of entropy can be significant, it is rarely calcu-

lated in control systems. Heat is transferred from the battery, or the battery’s

enclosure, to the environment through conduction, convection, or radiation.

Representing these mechanisms in the controller model enables optimal cooling

control that can efficiently enforce temperature limits and significantly reduce

battery degradation.

Lastly, battery degradation can be critical to consider when making

control decisions. Factors such as SoC, temperature, and DoD can stress the

materials in batteries and cause degradation over time and use. The empirical
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rainflow cycle counting algorithm or physical degradation models for calcu-

lating degradation are both highly accurate but difficult to fully incorporate

into an optimization problem. With a few simplifying assumptions, the stress

factor model can be reduced to take the form of a sum of regularization terms

in the objective function. These assumptions partially justify the more widely

used formulations for degradation based on number of cycles, heat generation,

and DoD. However, by including the nonlinear models in the controller, we

observe that small changes in controller schedules can have disproportionate

impacts on the rate of degradation. The myriad of trade-offs between model

complexity and model accuracy can be difficult to navigate, but these en-

gineering decisions can offer significant benefits in terms of BESS controller

performance.
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Chapter 3

Application of a Uniform Testing Protocol for

Energy Storage Systems

1 Methods for benchmarking and comparison can either limit or accel-

erate the adoption of emerging energy storage technologies on the grid. This

chapter assesses the efficacy of the methods in the U.S. DOE Protocol for

Uniformly Measuring and Expressing the Performance of Energy Storage to

remove barriers to the technology’s acceptance. The protocol enables stan-

dardized data collection to compare different technologies for energy storage

applications fairly. We apply the relevant portions of the protocol to a 1-

megawatt lithium-ion battery system to provide a critical assessment of pro-

cedures and methods it stipulates. Field experience and data will be invaluable

to standards development organizations as they begin to consider these meth-

ods for codification.

Contributions of this chapter were identified as follows: (minor) ap-

plication of a uniform test protocol to a grid scale energy storage system

to reduce performance uncertainty, (minor) development of new, useful en-

1D. Rosewater, P. Scott and S. Santoso, “Application of a uniform testing protocol for
energy storage systems,” in Proc. 2017 IEEE Power & Energy Society General Meeting,
Chicago, IL, 2017, pp. 1-5. DOI: 10.1109/PESGM.2017.8274603
The dissertator was the principle investigator for this research including collecting exper-
imental data, calculating performance metrics, and writing/editing the article itself. Paul
Scott designed and lead the project to build the device under test and Surya Santoso pro-
vided guidance and technical review.
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ergy storage performance metrics that provide more information to the device

owner.

3.1 Introduction

With the increasing role of renewables and aging grid infrastructure,

the need to enhance the stability, reliability, and efficiency of the electric grid

has become critical. While the value of deploying energy storage systems for

this purpose in the grid is widely recognized, so far energy storage integration

has been limited [12]. Projections in [153] indicate a growing role for energy

storage in the grid signaling a pressing need to understand better how energy

storage can provide grid services. Consistent metrics for system performance

are useful for comparing different energy storage technologies and for matching

each technology to the appropriate set of grid services that it can provide.

Standardized methods are required to obtain comparable and consis-

tent performance metrics from different storage technologies and different test-

ing laboratories. IEEE Std 1679 contains guidance on many of the methods

of energy storage testing [154]. The Protocol for Uniformly Measuring and

Expressing the Performance of Energy Storage [16] was developed through

a collaboration between the national laboratories and industry to continue

to build agreement over best practices for testing energy storage technologies.

The protocol contains procedures for administering reference performance tests

on energy storage systems to derive stored energy, efficiency, responsiveness,

standby losses, and self-discharge rate. Additionally, application specific duty-

cycle performance tests are provided for a few grid services including frequency

regulation. Frequency regulation is a grid service that helps a utility or re-

gional transmission operator manage the moment-to-moment differences be-
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tween load and supply in their areas [155]. Each application specific test in

the protocol includes a duty-cycle which has been assessed to represent of the

demands of that service. The derivation of the frequency regulation duty cy-

cle is explained in depth in [156] and includes the incorporation of a mix of

nominal and extreme operation.

We apply the frequency regulation testing procedure of the protocol,

including a reference performance test and a duty-cycle performance test, to

a 1-megawatt lithium-ion battery system. A preliminary report on this sys-

tem’s performance was made in [157]. In this chapter, we present a detailed

investigation of how the protocol was applied to aid standards developers. As

with any test procedure, adaptations and accommodations must be made to

the procedure to collect the data required to measure performance. Similarly,

the system itself must be designed and configured in such a way to enable

accurate, time-synchronized data to be collected in a uniform manner. This

chapter presents an in-depth discussion on these challenges to inform perfor-

mance testing standard development. Our data and observations will be useful

to standards development organizations seeking to codify methods for energy

storage performance testing.

The rest of this chapter is organized as follows: Section 3.2 explains

the relevant parts of the protocol and what modifications are done to its pro-

cedures to apply them to the equipment under test. Section 3.3 describes

the laboratory setup used to perform the experimental regimen including the

energy storage test pad (ESTP), the equipment under test (EUT), and the

control/instrumentation configuration. Section 3.4 provides the data collected

from the EUT during each test and the resulting calculated performance val-

ues. Section 3.5 discusses the qualitative and quantitative experience devel-
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oped through application of the protocol. Lastly, Section 3.6 summarizes this

research and explores what conclusions can be drawn as a result.

3.2 Methodology

This section explains how the test procedures outlined in the protocol

along with the equipment under test were adapted and configured to measure

energy storage performance uniformly.

3.2.1 Procedure Adaptation

The scope and schedule of our testing were limited by both technical

and financial constraints, and so it was not possible to perform the entire pro-

tocol as specified. Because of this, the procedure had to be prioritized and

adapted to provide highest relevance and portability of the generated perfor-

mance metrics using the fewest number of tests. Relevance in this context

refers to the ability of a metric to predict the performance of the system

when it is in operation and portability is the ability of a metric to contrast

the salient characteristics of the system with other storage technologies tested

at other laboratories. For this EUT, we decided to perform a subset of the

protocol’s tests for energy capacity and efficiency, additional tests for respon-

siveness (averaging the resulting metrics), and a shortened duty cycle test for

frequency regulation. Tests for energy capacity take hours to complete and

so only one could be completed per day whereas tests for responsiveness took

only a few seconds to complete and so could be repeated many times with

very little marginal cost. The shortened duty-cycle was selected because the

control signal is energy-neutral (equal charge and discharge energy) whereas,

due to losses, the system requires more energy input than output to maintain
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its SOC. The two-hour cycle was short enough to allow the system to stay in

a normal SOC range throughout. These adaptations were sufficient to satisfy

our constraints while producing relevant and portable metrics for analysis.

3.2.2 Test Procedures

The test procedures in the protocol are designed to measure the charac-

teristics of how a specific device provides its functionality. Tests can be broken

into two categories, reference performance tests (RPTs), and duty-cycle tests.

RPTs measure the characteristics of a system that affect how well it can store

energy (e.g. maximum stored energy) but that do not but do not necessarily

map to a specific grid service. The Stored Energy Test is an RPT to measure

the maximum energy a system can store and the efficiency of full capacity cy-

cles [16]. The Response Time and Ramp Rate Test is an RPT to characterize

the responsiveness of a system to external power commands [16]. Duty-cycle

tests measure a system’s emergent ability to provide a specific grid service

(e.g. frequency regulation). The Reference Signal Tracking Test measures

how closely a system can follow a duty-cycle which is representative of a given

grid service [16]. The adapted procedures used here are shown in Table 3.1.

3.2.3 Performance Calculation

Many performance metrics are important when benchmarking an en-

ergy storage system. Two of the most fundamental are stored energy and round

trip efficiency. Stored energy is defined as the energy which can be supplied

by the system at a given rate before it must be recharged [16]. Stored energy

is analogous to energy rating from [154]. This calculation is shown in (3.2.1).

The stored charge energy, shown in (3.2.2), is then defined as the maximum
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Table 3.1: Test Procedures
Step Procedure

1.0 Stored Energy Test (adapted from [16])

1.1 Charge the EUT to full SOC

1.2 Discharge the EUT to its minimum SOC level at full rated power,
measure and record the energy delivered by the EUT

1.3 Charge the system to full SOC, measure and record the energy ab-
sorbed by the EUT

1.4 Repeat Steps 1.2 and 1.3 at 1/2 rated power

2.0 Response Time and Ramp Rate Test (adapted from [16])

2.1 Charge or discharge the EUT to near 50% SOC

2.2 Precondition the EUT into a state of active standby (power set to 0
kW)

2.3 Discharge the EUT at rated discharge power, measure and record
the command time-stamp, voltage and current

2.4 Return the system to active standby

2.5 Repeat steps 2.3 and 2.4 at rated charge power

2.6 Repeat steps 2.3 through 2.5 twice

3.0 Reference Signal Tracking Test (adapted from [16])

3.1 Charge the EUT to full SOC

3.2 Discharge the EUT at 1/2 rated power to 50% SOC

3.3 Apply the time-series of commands for the frequency regulation
duty-cycle

3.4 Once the duty-cycle is complete, charge the EUT at 1/2 rated power
to full SOC

122



energy which can be absorbed by the system before it must be discharged [16].

Round Trip Efficiency (RTE), (3.2.3), is then defined as the ratio of these two

energy values [16]. RTE is an analog to energy efficiency as defined in [154].

Whd =
1

n

n∑
i=1

Whdi (3.2.1)

Whc =
1

n

n∑
i=1

Whci (3.2.2)

RTE =

∑n
i=1 Whdi∑n
i=1 Whci

(3.2.3)

Communication latency is defined in the protocol as the time between

receiving the power command and starting to change its power output [16].

Ramp rate is defined in the protocol as the settling time divided by rated power

(settling time is measured from when the system starts to respond to when it

settles within 2% of its rated power) [16]. There are no directly analog metrics

available in [154]. As the exact time that the system starts to respond can

be difficult to measure we modify this definition of Communication Latency

to be the time from sending the command to when system power exceeds

2% of rated power. Similarly, the definition of ramp rate was modified to

be the average rate of change in system power between 10% and 90% of the

set point [158]. These changes make measurements more robust to noise and

hence more consistent.

For a grid service-specific performance, the protocol uses duty-cycle

round-trip efficiency, signal tracking squared error, absolute error, energy er-

ror, and % time the signal is tracked [16]. Duty-cycle round-trip efficiency is
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calculated the same as round trip efficiency, using (3.2.1), (3.2.2), and (3.2.3),

except the duty cycle is used as the control signal. Duty cycle tests fall un-

der the general category of functional testing in [154]. In the protocol, the

error metrics are not normalized to either the size of the system or the sample

rate of the data acquisition making the results difficult to compare to other

systems tested by other laboratories. For this reason, this chapter uses the

following additional service specific duty-cycle performance metrics: tracking

error RMS, tracking error RMS %, and Alt. % of the time signal is tracked.

The formulas for these metrics are shown in (3.2.4), (3.2.5), and (3.2.6).

Tracking Error RMS = √∑
(PSignal(k)− PESS(k))2

N
(3.2.4)

Tracking Error RMS % = √∑
(PSignal(k)−PESS(k))2

N

Prated
(3.2.5)

Alt. % of time signal is tracked =∑N
k=1

(PSignal(k)−PESS(k))

Prated
< 2%

N
(3.2.6)

where PSignal is the commanded power, PESS is the instantaneous energy stor-

age power output, N is the number of points in the time record, and Prated is

EUT rated discharge power.
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3.3 Experimental Setup

Experimental data were collected at the Energy Storage Test Pad (ESTP)

located at the Sandia National Laboratories in Albuquerque New Mexico. The

ESTP is a laboratory designed for experimentation on large grid-connected en-

ergy storage systems. More information on the ESTP and its capabilities can

be found in [159].

3.3.1 Equipment Under Test

The TransPower GridSaver was commissioned by the California Energy

Commission (CEC) as part of their public interest energy research program.

The 1-megawatt rated system is comprised of four 250kW lithium-ion battery

strings. The system is built into a semi-trailer for easy transportation. While

the equipment is capable of functioning in many applications, it was designed

primarily for high-power, short-duration services. Battery SOC data was col-

lected through a battery management system which also provides passive cell

balancing. A full description of the system can be found in the final project

report to the CEC [160].

3.3.2 Control and Instrumentation

The EUT was primarily controlled through its HMI which allows system

operators to send real power commands, view system data including warnings

and errors, and change some automated functions, such as voltage and tem-

perature limits. In addition to the HMI, commands and data were available

on a controller area network bus. Custom-designed control equipment and

software allowed operators to automate some of the EUT’s functions. This

equipment sent open loop commands to the EUT and was used during the
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Response Time and Ramp Rate Test and the Reference Signal Tracking Test

which required time synchronized data for commands and system response.

Alternating voltage data were collected from both the 3-phase, Delta,

480V grid power connection bus, as well as the 3-phase, Y; 208V house power

used to supply the lights, battery management, battery rack fans, and inverter

coolant pump. Alternating current data were collected from each phase of all

four of the system’s power inverters, each phase of the air conditioner, and

each phase of the house power (house power and air conditioner are considered

auxiliary loads). All voltage measurements were calibrated to within 0.1% of

nominal voltage while all current measurements were calibrated to within 0.5%

of full-scale current. For the Stored Energy and Reference Signal Tracking

Tests data were collected at 24 kHz and averaged for recording to 1 sample

per second (1Hz). For the Response Time and Ramp Rate Time Test data

were collected and recorded at 12.5 kHz with a clock accuracy within 50 parts-

per-million. Assuming that errors in current, voltage, and time measurements

are independent, it can be calculated that power measurement accuracy was

within ± 0.51% of full scale (5.1 kW) for the results described in Section 3.4.

3.4 Results

3.4.1 Stored Energy Performance

Figure 3.1 shows the data collected from the EUT during the Stored

Energy Test. These data were processed according to (3.2.1), (3.2.2), and

(3.2.3). The performance metrics calculated for these conditions are shown

in Table 3.2. These results are useful to grid operators and energy storage

designers alike. Note that the system’s maximum power, recorded at 990 kW,

was only available near 100% SOC. This limitation on available power means
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Figure 3.1: Stored Energy Test Data

that when the EUT is operating at a partial state of charge, it will have

significant apparent power capacity to provide reactive power to support grid

voltage. It can also be observed that a roughly 7% drop in RTE comes from the

auxiliary loads, primarily cooling. Therefore a highly efficient cooling system

would be a valuable design feature for services that require higher efficiency.

3.4.2 Response Time and Ramp Rate Performance

The data collected during the Response Time and Ramp Rate Test on

one battery string in the EUT is shown in Figure 3.2. Charge and discharge

tests were performed separately and plotted together. Instantaneous power

was calculated from three-phase voltage and current. A 5th order digital But-

terworth low-pass filter was applied to clean up the instantaneous power signal

for analysis. Charge power and discharge power were normalized separately

to 1.0 and -1.0 p.u. respectively. Figure 3.2 shows fully processed response

characteristics for 100% charge and discharge power for one of the three tests.

In this plot, t = 0 represents the time when the EUT receives a command.
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Table 3.2: Stored Energy Test Results

Metric 100% Power
Performance

50% Power Perfor-
mance

Max Power Discharge 990 kW 502 kW

Duration Max Discharge 219 seconds 2305 seconds

Stored Energy 383 kWh 409 kWh

Max Power Charge 780 kW 543 kW

Charged Energy 433 kWh 468 kWh

Mean Auxiliary load 13.24 kW 15.04 kW

Round Trip Efficiency* 82.9 % 81.6 %

All values were measured at the grid connection with aggregate accuracy
within ±5.1kW, *Includes auxiliary load

Table 3.3: Response Time and Ramp Rate Test Results

Metric Performance

Mean Communication Latency 1.079 s

Mean Ramp Rate 2.12 MW/s

The result of the performance metric calculations are shown in Table 3.3. As

the system’s ramp time to full power is faster than the communication latency,

if this system were to be used in a fast response application it would benefit

significantly from a streamlined network infrastructure.

3.4.3 Reference Signal Tracking Test Performance

The data recorded during the Reference Signal Tracking Test is shown

in Figure 3.3. The calculated performance metrics are shown in Table 3.4. Ad-

ditionally, SOC data recorded during the experiment are shown in Figure 3.4.

The change in SOC was found to be -11.22% from the beginning to the end of
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Figure 3.2: Response Time and Ramp Rate Test Data (Normalized and Fil-
tered)

the duty cycle. Note that the battery management system did not record the

SOC returning to 100%. The wide difference between the highest cell voltage

and the lowest cell caused all four strings highest cell voltages to reach their

maximum charge voltage when the systems average SOC was only 70.96%.

These performance metrics are relevant for predicting how the system would

perform if it were installed in an RTO with a frequency regulation market. An

83.6% duty-cycle RTE, along with the test time of 3.346 hours and the dis-

charge energy 567 kWh, implies that the system would require approximately

27.8 kW on average to maintain the system’s SOC during operation. This

SOC maintenance power could also be used to compare the performance of

this system with other systems.
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Figure 3.3: Frequency Regulation Duty-Cycle Test Data
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Figure 3.4: State-of-Charge During Duty-Cycle Test
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Table 3.4: Reference Signal Tracking Test Results

Metric Performance

Discharge Energy 567 kWh

Charge Energy 638 kWh

Auxiliary load 12.11 kW

Duty cycle RTE 83.6%

Sum of squared error 3,646,416 kW2

Sum of absolute error 60,491 kW

Sum of energy error 381,561,167 kWh

% of time signal is tracked 24.5%

*Tracking Error RMS 22.5 kW

*Tracking Error RMS % 2.3 %

*Alt. % of time signal is
tracked

73.5%

*Additional metrics not in the protocol
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3.5 Discussion

Applying the protocol to a 1-MW energy storage system developed a

better understanding of the requirements of the protocol. Three observations

are discussed here along with recommendations for improvements to the pro-

tocol.

First, the EUT must be designed and configured to respond to an ex-

ternal command signal. The control scheme for energy storage systems varies

widely and depend on their intended applications. For example, a system de-

signed for peak shaving could respond to a clock while a system designed for

voltage regulation could respond to voltage. As the protocol is written now,

it does not fully account for these alternate control mechanisms when testing

systems. A full description of how to implement a control signal for each test

would increase the versatility of the protocol for wider adoption.

Second, an RPT to measure or verify SOC accuracy would be helpful

in accounting for a variety of system designs. A clear picture is needed of the

system’s available power and energy throughout it’s operational SOC range to

plan and execute test routines successfully. This requirement means that the

system needs both an accurate estimation system for SOC and an accurate

model for SOC forecasting that can be used to plan tests and predict the

system’s behavior. This model could be developed through a routine of pre-

tests on SOC accuracy.

Last, reported metrics should be normalized to account for a variety of

system sizes and test durations. Normalized versions of the sum of squared

error and sum of absolute error, including RMS error and RMS% error, are

easier to interpret and compare across energy storage technologies. Similarly,
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the requirement for the % Time the signal is tracked metric, as it is cur-

rently normalized to the instantaneous requested power, is nearly impossible

to satisfy at low power levels. Not normalizing causes a misleading result for

how closely the system follows the duty cycle which can be corrected for by

normalizing to the rated power instead.

3.6 Summary

The Protocol for Uniformly Measuring and Expressing the Performance

of Energy Storage enables fair benchmarking and comparison of different stor-

age technologies. We applied the protocol to a 1-megawatt rated energy stor-

age system to collect application experience and data that will help standards

development organizations to adapt and adopt the protocol with confidence

and clarity. The equipment under test had to be adapted to the protocol’s

requirements, and the protocol had to be adapted to the system’s constraints.

This lead to the development of three concrete recommendations for improve-

ments to the Protocol concerning: addition of guidance for configuration of

the command signal, addition of explicit state-of-charge accuracy test proce-

dures, and three new proposed metrics for reference signal tracking error. As

standard developers consider the provisions in the protocol this information

will help guide their assessment.
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Chapter 4

Battery Energy Storage State-of-Charge

Forecasting: Models, Optimization, and

Accuracy

1 Battery energy storage systems (BESS) are a critical technology for

integrating high penetration renewable power on an intelligent electrical grid.

As limited energy restricts the steady-state operational state-of-charge (SoC)

of storage systems, SoC forecasting models are used to determine feasible

charge and discharge schedules that supply grid services. Smart grid con-

trollers use SoC forecasts to optimize BESS schedules to make grid operation

more efficient and resilient. This chapter presents three advances in BESS

state-of-charge forecasting. First, two forecasting models are reformulated to

be conducive to parameter optimization. Second, a new method for select-

ing optimal parameter values based on operational data is presented. Last,

a new framework for quantifying model accuracy is developed that enables a

comparison between models, systems, and parameter selection methods. The

1D. Rosewater, S. Ferreira, D. Schoenwald, J. Hawkins, and S. Santoso, “Battery Energy
Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy,” IEEE Trans.
Smart Grid, vol. 10, no. 3, pp. 2453-2462, May 2019. DOI: 10.1109/TSG.2018.2798165
The dissertator was the principle investigator for this research including organizing field
data, developing the forecasting and model optimization algorithms, programming the data
analysis and accuracy metric cancellations, and writing/editing the article itself. J. Hawkins
was the project manager for the PNM Prosperity BESS installation studied. All co-authors
provided guidance in their areas of specialization and multiple rounds of technical review.
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accuracies achieved by both models, on two example battery systems, with

each method of parameter selection are then compared in detail. The results

of this analysis suggest variation in the suitability of these models for different

battery types and applications. The proposed model formulations, optimiza-

tion methods, and accuracy assessment framework can be used to improve the

accuracy of SoC forecasts enabling better control over BESS charge/discharge

schedules.

Contributions of this chapter were identified as follows: (minor) re-

formulated two SoC forecasting models to be conducive to parameter optimiza-

tion, (major) developed a new method for selecting optimal parameter values

based on operational data is presented, (minor) developed a new framework

for quantifying model accuracy.

4.1 Introduction

Battery energy storage can help meet renewable portfolio standards in

the U.S., or similar goals set by countries around the world [12,161]. Because

of this need, there is significant work being done to research the benefits,

drawbacks, and challenges of integrating BESS into the grid using a variety

of mathematical models. A fundamental component of all BESS models is a

sub-model to estimate and forecast its state-of-charge (SoC). The definition of

SoC, represented in (4.1.1), is the ratio of remaining to nominal capacity.

State of Charge ,
Remaining Capacity

Nominal Capacity
(4.1.1)

In this context, capacity can be measured in energy (kWh) or in charge

(Ah). SoC estimation models are commonly used in consumer electronics and
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electric vehicles to provide an onboard reading of present remaining capacity.

These allow users to approximate how long their devices will last before need-

ing to be charged or how far their vehicles will drive before needing to reach

a charging station. SoC estimation models have been reviewed in detail [162]

and are used in this chapter as a reference to compare the accuracy of SoC

forecasting models.

SoC forecasting models are commonly used in control design and opti-

mization [32,34,39,46,54,55,57]. Considering that error in SoC forecasts can

lead to suboptimal control, forecasting model error has been underexamined

in research on energy storage control. This chapter advances the field of BESS

SoC forecasting through the reformulation of two distinct models, an optimal

parameterization method, and a forecasting accuracy assessment framework.

We introduce two novel formulations of energy storage system SoC fore-

casting models that are conducive to regression methods for selecting optimal

parameters. The energy reservoir model (ERM) measures capacity in units of

energy and accounts for round-trip energy efficiency and self-discharge power.

The charge reservoir model (CRM) measures capacity in units of charge and

accounts for battery coulombic efficiency and self-discharge current. The CRM

also uses functions for inverter efficiency, battery voltage, and battery resis-

tance to calculate dc current from ac power. Both forecasting models use

linear algebra to decouple the forcing function from the model parameters re-

sulting in simple formulations and an analytic solution to optimal parameter

calculation.

The various methods for choosing model forecasting parameters are

then introduced, along with a novel method specific to the ERM and CRM for

utilization of operational data to select optimal parameters. The objective of
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this optimization is to minimize SoC forecasting error. We then demonstrate

these methods to choose ERM and CRM parameters for an operational energy

storage system. The forecasting error of each model is then analyzed in detail

using robust accuracy metrics to understand where each is best applied.

The rest of this chapter is organized as follows: Section 4.2 establishes a

method for SoC estimation which is robust to sensor noise. Section 4.3 develops

the ERM and CRM forecast models. In Section 4.4, the conventional methods

for parameter selection are listed and an optimal parameter selection method

is developed using operational data. Section 4.5 then applies these methods

to a large scale battery system, then proposes and applies a framework for

model accuracy assessment. Lastly, Section 4.6 reviews the conclusions from

this work and posits how they will direct future work.

4.2 State of Charge Estimation

In order to develop an accurate SoC forecast model we must first esti-

mate SoC from the operational system. A SoC forecast model takes historical

sensor measurements from a battery and produces an estimate of remain-

ing capacity. Model inputs include measurements of battery voltage, current,

and, in certain cases, low precision SoC estimates from a battery management

system (BMS). A Kalman filter (KF) can be developed to incorporate these

measurements and knowledge of the variance of the process and sensor noise

to produce a more accurate on-line estimation of SoC. A plant model can be

developed for the battery starting with the first order dynamic battery model

as shown in Fig. 4.1 [163,164].

In addition to a dynamic model, a SoC model, such as in [54], is also

required. To select parameters for this model we draw on the manufacturer’s
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Figure 4.1: First Order Dynamic Battery Model

specification sheet and laboratory testing data. The methods of parameter

selection are discussed in greater detail in Section 4.4. From [165] and [162]

we can derive a KF to estimate SoC. The following linear system model can

be used:

ż = Az +Bu+ w̃ (4.2.1)

y = Cz +Du+ ṽ

w̃ ∼ N(0,Q), ṽ ∼ N(0,R)

z =

v1

ς+
ς−

 z0 =

0
0
0

 y =

[
vbat
ς

]
u =

[
id
ic

]

A =

 −1
R1C1

0 0

0 0 0
0 0 0

 B =


1
C1

1
C1

1
Ccap

0

0 ηc
Ccap


C =

[
1 γ γ
0 1 1

]
D =

[
R0 R0

0 0

]
With this model, the steady state error covariance (Σ) can be calculated

138



by solving the matrix Riccati equation in (4.2.2),

AΣ + ΣAT +QT −ΣCTR−1CΣ = 0, (4.2.2)

where Q ∈ S3×3
+ reflects the variance of the process noise or model error, and

R ∈ S2×2
++ reflects the variance of the sensor noise in measuring the output y.

Using the error covariance matrix, the KF feedback gains can be calculated

using (4.2.3).

L = ΣCTR−1 (4.2.3)

Using the results above, the state estimation (ẑ) can be calculated

recursively in (4.2.4).

˙̂z = Aẑ +Bu+L(y −C ẑ −Du) (4.2.4)

By updating the state estimation recursively based on measurements

from the system, the KF will follow the actual system states rather than what

the model would project. This means that if this same model were used as a

forecasting model, which would not benefit from measurements, there would

still be error between the forecast and the actual system states.

4.3 SoC Forecast Models

This section presents two SoC forecasting models: the Energy Reservoir

Model (ERM) and Charge Reservoir Model (CRM). As the names suggest, the
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Figure 4.2: Energy Reservoir Model

ERM’s capacity is measured in energy (kWh) where the CRM’s capacity is

measured in charge (Ah).

4.3.1 Energy Reservoir Model (ERM)

The energy reservoir model (ERM) records its available capacity in

units of energy (kWh). There are many variations of this model including:

models that assume 100% charge efficiency [26, 32, 34, 35], models that do

not include self-discharge power [32, 34, 38, 46], and models that have distinct

charge and discharge efficiencies [38,39,41,46]. The ERM is governed by (4.3.1

- 4.3.4).

ς(n) = ς̂0 −
∆t

Qcap

n∑
k=1

(pd(k) + ηepc(k) + psd(1kW)) (4.3.1)

pc = min(pe, 0) (4.3.2)

pd = max(pe, 0) (4.3.3)

ςmin ≤ ς(k) ≤ ςmax (4.3.4)

The mathematical structure of this model is similar to many of those

found in the literature and discussed above. Note that psd is defined to be the
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unitless scaling factor for a (1kW) self-discharge power for simplicity of the

model reformulation below. The state flow diagram for the ERM is shown in

Fig. 4.2. It has an open-loop structure which is linear and computationally

efficient. Note that the input pe is the real power actuated by the system

which may be slightly different from power commands sent to the system by

a controller. The recursive formulation of this model, with three separate

constraints, is not conducive to efficient optimization. To configure the model

as a system of n linear equations (4.3.1-4.3.3) are then reformulated using the

following definitions.

Let

x =
−1

Qcap

 1
ηe
psd

 (4.3.5)

and

P =


∆tpd(1) ∆tpc(1) ∆t

∆t(pd(1) + pd(2)) ∆t(pc(1) + pc(2)) 2∆t
...

...
...

∆t
∑n

k=1 pd(k) ∆t
∑n

k=1 pc(k) n∆t

 (4.3.6)

The n×3 matrix P is made up of the cumulative sum of the discharging

energy (kWh) in the first column, the cumulative sum of the charging energy

(kWh) in the second column, and the cumulative sum of a unit energy (kWh) in

the third column. The vector x is then the linear separation of the coefficients

of the three model parameters associated with the capacity (Q) the energy

efficiency (ηe), and the self-discharge power scaling factor (psd). Hence (4.3.1-
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4.3.3) can be written:

ς = Px+ ς̂0 (4.3.7)

4.3.2 Charge Reservoir Model (CRM)

The charge reservoir model (CRM) records its available capacity in

units of charge (Ah). This model is also commonly referred to as the “ampere-

hour method” or as “coulomb-counting.” As charge and discharge schedules

are provided in units of power (kW), we include a power conversion model.

Inverter based power conversion efficiency is modeled as a constant percentage

[55], a piecewise constant percentage [166], or as a function of power [56, 57,

167]. The power conversion model used here is a quadratic polynomial fit φ

where pbat = φ(pe).

The above efficiency model yields dc power, while the charge based

model requires dc current. In batteries, the power and current are related by

battery voltage and battery impedance. These properties can be approximated

using the dynamic battery model shown in Fig. 4.3. Battery impedance can

be independent of SoC [55,57,166,167], or dependent on SoC [56]. The open-

circuit voltage of this circuit is governed by (4.3.8). The dc current (ibat) can

be derived as a function of ac power as shown in (4.3.9).

voc = hv(ς) (4.3.8)

ibat =
−voc ±

√
v2
oc + 4R0pbat

2R0

(4.3.9)

Note that two solutions exist for each pbat, one at high |ibat| and low

terminal voltage, and one at low |ibat| and high terminal voltage. As the
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high |ibat| solution is out of range for safe battery operation, only the low

|ibat| solution is used. Because of the sign convention, the usable solution is

associated with the additive (+) permutation of the equation. The function

hv(ς), is highly dependent on the battery chemistry. The function used here

is a linear approximation voc = K1ς +K2.

With dc current available from (4.3.9), SoC can be calculated using

(4.3.10). Similar models assume 100% coulombic efficiency [54–57], and no self-

discharge current [56, 57]. The model presented here includes both coulombic

efficiency and self-discharge current as parameters to be selected.

ς(n) = ς̂0 −
∆t

Ccap

n∑
k=1

(id(k) + ηcic(k) + isd(1A)) (4.3.10)

ic = min(ibat, 0) (4.3.11)

id = max(ibat, 0) (4.3.12)

Note that isd is defined to be the unitless scaling factor for a (1A) self-

discharge power for simplicity of the model reformulation below. The state flow

diagram for the charge reservoir model is shown in Fig. 4.4. This is a closed-

loop model structure with the non-linear function hv(ς) in the feedback. This is

computationally less efficient than the ERM because it must be run recursively

at a high enough sample rate to account for the feedback dynamics. However,

the section between ibat and ς is nearly identical in structure to the ERM.

Similarly to the ERM, (4.3.10-4.3.12) can be reformulated for optimization

using the following definitions.

Let

y =
−1

Ccap

 1
ηc
isd

 (4.3.13)
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and

I =


∆tid(1) ∆tic(1) ∆t

∆t(id(1) + id(2)) ∆t(ic(1) + ic(2)) 2∆t
...

...
...

∆t
∑n

k=1 id(k) ∆t
∑n

k=1 ic(k) n∆t

 (4.3.14)

The n× 3 matrix I is made up of the cumulative sum of the discharge

(Ah) in the first column, the cumulative sum of the charge (Ah) in the second

column, and the cumulative sum of a unit discharge (Ah) in the third column.

The matrix y is then the linear separation of the coefficients of the three

decision variables associated with the capacity (Ccap) the coulombic efficiency

(ηc), and the self-discharge current scaling factor (isd). Hence (4.3.10) can be

written:

ς = Iy + ς0 (4.3.15)

4.4 Choosing Model Parameters

This section provides three methods to choose the parameter values

for each model. The energy reservoir model is fully specified by the scalar

values of Qcap, ηe, and psd. The charge reservoir model is fully specified by

the scalar values of Ccap, ηc, and isd, along with two functions φ(pe), and

hv(ς). The following sections demonstrate how to determine these parameters

based on the information available to an analyst. Fig. 4.5 shows the pros

and cons for using information available from specifications, testing data, and

operational data. Before a system is installed, often the only performance

information available comes from the manufacturers’ specifications. Section
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4.4.1 outlines the difficulties of choosing parameters from this information.

Once a system is installed, testing data outlined in Section 4.4.2 can be used

to choose parameters that improve model accuracy. After a system has been

operational for some time, historical measurements and SoC estimation data

can be used as outlined in Section 4.4.3 to optimize forecast accuracy.

4.4.1 Choosing Parameters from Specifications

The simplest way to select parameter values is to use the system’s design

specifications or ratings. However, the system ratings corresponding to each

parameter in the ERM and CRM incorporate assumptions about operation.

Because of the link between operation and performance, it is difficult to know

how the system will perform before it is operational. Choosing parameters

from specifications also implicitly assumes that the manufacturer ratings are

true values rather than conservative approximations. It is common practice

to rate a system based on how it will be able to perform at the end of the

warranty period as a contractual obligation rather than a design value. Less

commonly, manufacturers sometimes rate their system’s power and energy

separately, meaning a 10 kW, 10 kWh system may only be able to provide 10

kW for a few minutes and get 10 kWh from a low rate discharge. A system

may also have aspirational ratings based on ideal operational conditions, as

is common for inverter efficiencies. Despite these issues, manufacturer ratings

are often the only information available and so are commonly used to select

parameters.
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Prior to a system being built the manufacture can supply 
specifications of the system’s expected performance

Pro: easy, quick
Con: aspirational or conservative values, mismatch 

between expected and actual use

As soon as a system is built tests can be performed to 
estimate performance metrics that are relevant to the SoC 

forecasting model
Pro: improves model accuracy

Con: some mismatch between expected and actual use

Once a BESS is installed and operational, the data collected 
from it can be used to further improve accuracy.

Pro: best possible model accuracy
Con: significant data collection and processing required

Initial Planning Stages

System Construction/Installation

Extended Period of Operation 

Project Start

Figure 4.5: Flowchart for Choosing Model Parameters
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4.4.2 Choosing Parameters from Testing

Performance metrics derived from testing can be used to select model

parameter values and improve forecasting accuracy. Test procedures for bench-

marking capacity and round-trip energy efficiency can be found in [16]. The

requirements for a test to estimate self-discharge rate can be found in [168].

These protocols also include duty-cycles associated with a variety of applica-

tions that can help determine the performance of the system under the oper-

ational conditions it may expect when in service. A protocol for calculating

a polynomial function for φ(pe) can be found in [87]. For batteries, standard

methods and procedures for testing the performance of batteries sufficient to

derive the function hv(ς), as well as battery capacity, coulombic efficiency, and

self-discharge current can be found in [121].

4.4.3 Operational Data

Once a BESS is installed and operational, the data collected from it can

be used to further improve forecasting accuracy. During operation, SoC data

is obtained from the KF SoC estimation algorithm presented in Section 4.2.

The parameter vector x in (4.4.1) is chosen to minimize the sum of squared

differences (l2 norm) between ς and ς̂KF.

min
x∈R3
||Px+ ς0 − ς̂KF||22 (4.4.1)

The charge reservoir model is optimized in the same way. The param-

eter vector y can be optimized to minimize the l2 norm using (4.4.2).
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min
y∈R3
||Iy + ς0 − ς̂KF||22 (4.4.2)

The advantage of this formulation is that the objective functions (4.4.1)

and (4.4.2) can be solved analytically using the psudoinverse specified in (4.4.3)

[169].

xo = (P TP )−1P T (ς̂KF − ς0) (4.4.3)

yo = (ITI)−1IT (ς̂KF − ς0)

For these problems to have solutions P TP and ITI must be invertible,

meaning they must have full rank. This would not hold if either the device

were not used (pe = 0 / ibat = 0) or if the device were only charged or only

discharged (pd = 0 or pc = 0 / id = 0 or id = 0 )

4.5 Model Implementation and Comparison

These methods are applied to two large scale energy storage installa-

tions with carbon enhanced lead-acid batteries. The example installations are

two co-located but independent BESS: a photovoltaic power smoothing bat-

tery, and peak shifting battery [170]. Time series ac power, dc current, dc

voltage, and onboard SoC (from each system’s BMS) were collected for 260

days. These days were selected because out of one year surveyed, they were

found to have sufficient data integrity for analysis. To reduce the effects of

sensor noise, power below 5 kW (and current below 5 A in the case of the CRM

for the shifting battery) were set to zero. Measurement noise above this level
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was filtered first by the data collection system and then by the data archival

system which was configured to only record changes in data trends outside of

set parameters. Section 4.5.1 outlines the results of using an SoC estimation

model to recover the precision of battery SoC lost to the data archiving server

settings. Section 4.5.2 shows how parameters are selected for the example

system using the methods described in Section 4.4. Section 4.5.3 proposes a

quantitative error based framework to assess forecasting model accuracy. Sec-

tion 4.5.4 then compares the relative accuracy of each model, on both systems,

using conventional and optimal parameter selection methods.

4.5.1 SoC Estimation

This section covers the results of applying the general method described

in Section 4.2 to the example system to estimate SoC. The purpose of this step

is to recover SoC precision lost to the data archival system. The data archival

system maintains zero digits of precision (whole SoC percentages only) and

then reduces the number of points needing to be stored by only recording a

new point when it changes the linear trend of the data. This data compression

means that variable signals like current or power will have significantly higher

resolution data than slow changing signals like SoC. The KF model parameters

are listed in Table 4.1.

As the smoothing battery’s operation is made up of short duration

charge or discharge pulses to counteract fluctuations in PV system output,

the resulting fluctuations in SoC are small. The data archival system used by

the example system filtered these small fluctuations into straight line trends,

loosing precision that is important to our analysis. The KF is able to recover

the small fluctuations is SoC resulting from active PV smoothing. In the
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Table 4.1: SoC Estimation Model Parameters
Parame-

ter
Smoothing Battery

Shifting
Battery

R0 143 mΩ 95 mΩ
R1 0.15 mΩ 0.05 mΩ
C1 3.4 kF 10.1 kF
Ccap 1,000 Ah 3,000 Ah
γ 0.635 V/%SoC 0.635 V/%SoC
η 99% 99%
Q diag([5 0.1 0.1]) diag([5 0.1 0.1])
R diag([14 5]) diag([14 5])

fallowing sections the restored SoC signal is used to select parameters and to

determine the each model’s accuracy. Figure 4.6 shows the SoC recorded from

the BMS, along with the SoC estimated using the KF, on a sample day where

the smoothing battery was active. The KF estimate has double precision,

zero mean error, and an unknown error distribution. In similar applications

of the KF the error distribution has been reported to be within 3% of the true

value [162]. The trend for the KF estimated SoC is the same as from the BMS.

However, the effects on SoC of the short duration smoothing pulses are now

clear in the data.

4.5.2 Parameter Selection

This section describes the process of choosing parameters for the exam-

ple system. Tables 4.2, 4.3, and 4.4 show a summary of the model parameters

selected. An important caveat to these parameters is that they are static

throughout the year, even though the underlying performance of the batteries

is likely to change some in that time. Adaptive modeling that would account

for this change is out of the scope of this work.
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Table 4.2: Summary of Energy Reservoir Model Parameters

Battery
Selection
Method

Capacity
(kWh)

Efficiency
(%)

Self-
Discharge
Rate S.F.
(%)

Smooth [43] S 180 95 0
Smooth T 761.2 91.86 1.545
Smooth O 797.56 90.04 0.672
Shift [43] S 990 70 0
Shift T 1982 89.30 9.52
Shift O 2371 91.2 3.38

Specifications (S), Testing (T), Optimal (O), Scaling Factor (S.F)
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Table 4.3: Summary of Charge Reservoir Model Parameters

Battery
Selection
Method

Capacity
(Ah)

Coulombic
Efficiency
(%)

Self-
Discharge
Current
S.F. (%)

Smooth S 1000 99 0
Smooth T 1162 89.6 0
Smooth O 1123 88.4 2.423
Shift S 3000 70 0
Shift T 3354 98.14 2.45
Shift O 3557 91.87 2.42

Inverter
Selection
Method

P 2
e

Coefficient
Pe

Coefficient
Offset
Coefficient

Smooth S 0 0.95 0

Smooth T 0 Discharge / Charge

95.2 / 94.2
0

Smooth O 4.6296e-5 1.0041 7.9188
Specifications (S), Testing (T), Optimal (O), Scaling Factor (S.F)

For the ERM, the shifting and smoothing battery system specifications

are found in [43] which has an expected power operation close to 250 kW

resulting in an energy specification of Qcap = 180 kWh. Similarly, values for

ηe and psd are 95% and 0 respectively. To build on the work in [43] we use these

same parameter values for our study of forecast accuracy. Specifications for

the shifting battery are Qcap = 990 kWh, ηe = 70%, and psd = 0 respectively.

For the CRM, more information on the batteries in the example systems is

required. The power smoothing battery is built from 320, 2 V cells [172], and

is rated at 1000 Ah (Ccap) and 640 V. The inverter has a rated peak conversion

efficiency of 95%. Coulombic efficiency and self-discharge current specifications

were not available for our analysis, but for a reasonable approximation we use

ηc = 99% and isd = 0 respectively. Similarly, values for the shifting battery
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Table 4.4: Smoothing Battery Dynamic Model Parameters
Battery Voltage Linear Model [171]
ς Coefficient 0.19833 V/%
Offset Coefficient 1.9483 V
Battery
Resistance

Resistance

R0 per cell 3.419e-4 Ω

can also be chosen to be Ccap = 3000 Ah, ηc = 70%, and isd = 0. Note that

sufficient data were not available to parameterize a dynamic battery model

for the shifting battery so power conversion was not modeled in the CRM in

this example. Instead, dc current is used as the charge/discharge input to the

shifting battery CRM.

Several tests were found in the course of battery operation sampled.

These tests can be used to calculate parameters for the ERM, and CRM for

both batteries. For the ERM, a capacity test, similar to what is described

in [16], was performed on the smoothing battery. The test took the system

from a maximum SoC of 100% to a minimum 23% and back again to 100%.

This test enables the calculation of both energy capacity, Qcap = 761.2 kWh,

and energy efficiency ηe = 91.86%. A self-discharge test, consistent with the

requirements described in [168], was also performed on the smoothing battery.

This test, which holds the SoC constant for 24 hours using whatever charge

power is needed, enables the calculation of self-discharge power scale factor

psd = 1.545. Similar tests were found for the shifting battery which resulted

in parameter values of Qcap = 1981.5 kWh, ηe = 89.30%, and psd = 9.524.

In order to calculate CRM parameters for the smoothing battery we

combine data from literature, the laboratory, and the field. The open-circuit

voltage of the battery can be approximated by a linear function voc = hv(ς) =
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Figure 4.7: Inverter ac Power per dc Power (left), Inverter Efficiency per dc
Power (right)

K1ς + K2 where K1 = 0.198V and K2 = 1.95V (calculated from published

string voltage as a function of depth of discharge) [171]. Six laboratory ca-

pacity tests performed on the battery are analyzed to derive capacity Ccap =

1,162 Ah, and coulombic efficiency ηc = 89.6%. These cycles were also used to

derive the battery impedance R0 shown in Table 4.4. The power conversion

function φ(pe) can be found through regression of field performance data [87].

As batteries spend much of their time near zero power, a direct curve fit would

over-weight low power measurements. This problem is corrected by creating

an even distribution of aggregation bins along the dc axis wherein the ac power

measurements are averaged. The least-squares quadratic fit can be determined

for the aggregation bins as shown in Fig. 4.7.

The optimal parameters for both models of both batteries are solved ac-

cording to Section 4.4.3. The optimal solution over the whole dataset provides

a benchmark by which to measure the effectiveness of the other parameter

selection methods. The optimal parameters calculated are shown in Tables

4.2 and 4.3.
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When building a forecast model for control systems, it is better to ran-

domly assign a subset of the available data as a training set and the rest as a

testing set. The model is optimized for the training set, but the accuracy is

assessed on the testing set. This split helps ensure that models are not over-fit,

and represent larger trends rather than fine detail. We have chosen not to do

this in our study as we are not using it for control and because it becomes

useful to know what the minimum possible error is for each model. The SoC

forecasting error is the result of unmodeled system dynamics, inaccurate pa-

rameters, and measurement noise. Measurement noise is likely to be Gaussian

and small. The KF applied in Section 4.5.1 reduces the impact of measurement

noise, though it is likely that some of its effects remain. By choosing globally

optimal parameters, the remaining forecasting error is primarily the result of

unmodeled system dynamics which do not have a clear, noise like, distribution

that can be easily modeled. Unmodeled system dynamics are likely to have

non-Gaussian impacts, have non-zero mean, and both will be functions of the

SoC, current, voltage and many other factors. This allows for a more direct

comparison of the relative magnitude of unmodeled system dynamics between

the ERM and CRM for these example systems.

4.5.3 Model Accuracy Framework

In this section, a methodology is proposed for quantifying the accuracy

of SoC forecasting models. First, a forecast horizon is chosen based on the

needs of the service being scheduled. A large sample of operational data is

then broken into discrete periods each with the length of one horizon. For each

period in the sample, a model is supplied the initial estimation of SoC (ς0) and

that period’s reference charge/discharge schedule (pe). The model then uses
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that schedule to calculate a forecast (ς). The maximum positive error (4.5.1),

maximum negative error (4.5.2), and RMS error (4.5.3) are then recorded for

all periods in the sample, and a histogram is developed to display the RMS

error level occurrence rate graphically.

µmax+ = max (ς − ς̂KF) (4.5.1)

µmax− = min (ς − ς̂KF) (4.5.2)

µrms =

√√√√ 1

n

n∑
k=1

(ς(k)− ς̂KF(k))2 (4.5.3)

The mean RMS error is an intuitive metric that is robust to outliers.

The histogram allows the error distribution to be compared visually between

models and systems. The record of maximum positive and negative errors

enables the calculation of probabilistic limits on forecast error. We define a

90% high error threshold as the SoC error under which the maximum positive

error in a randomly selected forecast will occur 90% of the time. Similarly, we

define a 90% low error threshold as the SoC error above which the maximum

negative error in a randomly selected forecast will occur 90% of the time. These

thresholds can be calculated from a discrete set of forecasts by first sorting

the forecasts (µmax+ and µmax− separately) from lowest to highest magnitude

errors, and then selecting the error corresponding to the kth forecast, where

k = floor(90%×m). Practically, these thresholds define the SoC error margins

for a proposed schedule. Mean RMS, 90% high error threshold, and 90% low

error threshold form the accuracy framework on which we based comparisons

between models and example systems.
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4.5.4 Model Comparison

Using the methods described above, we can compare forecasting accu-

racy of the proposed models and parameter selection methods. As a control

system model is not used, each model is supplied the actual charge/discharge

schedule (pe), rather than the control reference. On an i5 CPU with 1.8

GHz clock speed the computation time required for each model to produce

forecasts for this sample were 0.476 seconds and 28.7 seconds for the ERM

and CRM respectively. The increased computation time is a result of the

open-circuit voltage feedback and non-linear current calculation required in

the CRM. The CRM is supplied the battery current charge/discharge sched-

ule for the shifting battery (ibat) because data were not available to select

parameters for its dynamic battery model. Fig. 4.8 shows a selected forecast

period for the smoothing battery. Each trajectory is produced by a different

parameter selection method. As more information is incorporated into the

parameter calculation the SoC forecast more closely follows the KF SoC esti-

mate. By assessing many forecast horizons we can calculate a distribution of

error magnitudes as outlined in Section 4.5.3.

Over a large sample of forecasting periods this trend, and its limitations,

become clearer. Fig. 4.9 shows the histograms of RMS error for each model

and battery calculated from 260 periods, each with a 24-hour forecast horizon.

Each histogram identifies the parameter selection method used: specifications

(blue), testing (green), and optimization using operational data (red). Table

4.5 then lists the 90% high error threshold, mean RMS error, and 90% low

error threshold for the example systems. In each case, incorporating better

information, from testing or operational data, reduces the overall distribution

of forecasting error. However, the magnitude of this benefit is highly variable.
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Table 4.5: State-of-Charge Forecasting Error Metrics

Battery Model
Selection
Method

90%
High

Mean
RMS

90%
Low

Smooth ERM S 48.10 8.79 -25.31
Smooth ERM T 6.65 4.11 -10.46
Smooth ERM O 12.96 2.93 -5.92
Smooth CRM S 6.09 4.47 -9.96
Smooth CRM T 6.15 3.58 -7.85
Smooth CRM O 6.41 3.02 -6.12
Shift ERM S 34.23 9.04 -38.83
Shift ERM T 17.56 4.15 -18.14
Shift ERM O 16.90 3.91 -18.85
Shift CRM* S 20.29 4.37 -17.15
Shift CRM* T 19.25 3.95 -17.87
Shift CRM* O 16.63 3.93 -19.13

Specifications (S), Testing (T), Optimal (O)
* a dynamic battery model was not used for the shifting battery

For the smoothing battery, the ERM is greatly improved by selecting parame-

ters based on testing data and then based on operational data, reducing mean

RMS error from 8.79% to 4.11% and then to 2.93%. Whereas for the shifting

battery, this parameter selection progression reduces mean RMS error from

9.04% to 4.15% and then to 3.91%. For the CRM, use of testing data does

not appreciably improve the shifting battery accuracy, whereas it results in

a 1.5 fold improvement for the smoothing battery. Updating the forecasting

model as better information becomes available has the potential to, but is not

guaranteed to, improve forecasting accuracy.

For this example system the manufacturer specifications yielded more

accurate forecasts using the CRM. This is because the CRM parameters are

accurate over a wider range of operation and hence the model is less sensitive

to a mismatch between expected and actual use. Both model’s parameters
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Figure 4.9: State-of-Charge Forecasting RMS Error for: Smoothing battery
with ERM (top), Smoothing battery with CRM (middle top), Shifting battery
with ERM (middle bottom), Shifting battery with CRM (bottom)
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were selected based on the expectation that the system would be operated at

high charge and discharge rates. As actual use was, on average, at low charge

and discharge rates the model that whose parameters change less with changes

in operation produces more accurate forecasts.

When comparing models with optimal parameters on the same battery

system we expect that the majority of the error is the result of unmodeled

system dynamics. For both battery systems, the optimal mean RMS for the

ERM and CRM are roughly identical. This can be interpreted as evidence

that the additional dynamics modeled by the CRM are not critical for these

systems in their operational environments. While the CRM significantly in-

creases forecast computation time, in this case it does not significantly improve

forecast accuracy. Note that, for the shifting battery, a dynamic battery model

would introduce additional error from unmodeled dynamics and hence its ab-

sence would not account for lower CRM model accuracy. The generalization

of this result is that there are battery systems and applications where a simple

model is fully sufficient to achieve accurate forecasts. We speculate that this

is likely to be true in highly consistent operational environments or where a

battery system varies little in voltage, temperature, or charge and discharge

rates. This result also suggests that different batteries and different appli-

cations may be modeled better by either the ERM or CRM, and that it is

critical to understand the forecasting error of the BESS models used in grid

integration analysis.

4.6 Summary

This chapter has presented two novel formulations of SoC forecast-

ing models and a method to calculate their optimal parameters. We then
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compared the forecasting accuracy of both models, on two example battery

systems, using three different methods of parameter selection: manufacturer’s

specifications, testing data, and selecting optimal parameters based on opera-

tional data. While both models were found to be more accurate forecasting the

smoothing battery’s SoC, the CRM was found to have better accuracy than

the ERM when parameters were chosen from the manufacturer’s specification

sheet. This was the result of the CRM’s accuracy being less sensitive than the

ERM’s accuracy to a mismatch between expected and actual use. However,

for these system’s in their operational environment, the CRM and ERM were

equally impacted by unmodeled system dynamics, meaning they were equally

accurate when they each had optimally selected parameters.

A general conclusion of this research is that different battery models

will be more accurate than others for specific systems in specific applications.

Further, there are specific systems and applications where the SoC forecast

accuracy of the open-loop ERM is not significantly improved by the additional

dynamics modeled in the CRM. The proposed framework for model accuracy

assessment is a useful and widely applicable method to quantify forecasting

accuracy. We intend to continue to expand the technical foundation of SoC

forecasting models to improve their utility through the development of more

accurate models, and methods of model adaptation to improve accuracy over

time. Understanding and controlling the effects of battery model uncertainty

will be critical to the integration of energy storage into a smart power system.
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Chapter 5

Adaptive Modeling Process for a Battery

Energy Management System

1 Battery energy storage systems are often controlled through an en-

ergy management system (EMS), which may not have access to detailed mod-

els developed by battery manufacturers. The EMS contains a model of the

battery system’s performance capabilities that enables it to optimize charge

and discharge decisions. In this chapter, we develop a process for the EMS to

calculate and improve the accuracy of its control model using the operational

data produced by the battery system. This process checks for data salience

and quality, identifies candidate parameters, and then calculates their accu-

racy. The process then updates its model of the battery based on the candidate

parameters and their accuracy. We use a charge reservoir model with a first

order equivalent circuit to represent the battery and a flexible open-circuit-

voltage function. The process is applied to one year of operational data from

two lithium-ion batteries in a battery system located in Sterling, MA USA.

Results show that the process quickly learns the optimal model parameters and

1D. Rosewater, B. Schenkman, and S. Santoso, “Adaptive Modeling Process for a Bat-
tery Energy Management System” in Proc. Symposium on Power Electronics, Electrical
Drives, Automation and Motion, Sorrento, Italy, June 2020.
The dissertator was the principle investigator for this research including organizing field
data, developing the optimization and adaptation algorithms, programming the data analy-
sis and uncertainty cancellations, and writing/editing the article itself. Co-authors provided
guidance in their areas of specialization and technical review.
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significantly reduces modeling uncertainty. Applying this process to an EMS

can improve control performance and enable risk-averse control by accounting

for variations in capacity and efficiency.

Contributions of this chapter were identified as follows: (minor) de-

veloped a process for the EMS to calculate and improve the accuracy of its

control model using the operational data produced by the battery system, and

(minor) demonstrated the effectiveness of this process using real world data.

5.1 Introduction

The energy management system (EMS) is critical to the operational

longevity and profitability of a battery energy storage system (BESS). In many

BESS, the battery management system (BMS) is responsible for battery pro-

tection and state estimation, while the EMS is responsible for deciding when

to charge and discharge. The models used by BMS and EMS can be very

different. Much of the detailed chemistry data available to the BMS designers,

is not available to the EMS designer. What is available however, can be a del-

uge of operational data. These data can be used to develop a highly accurate

model that an EMS can use to optimize its decisions.

EMS models have been reviewed in detail in [13], and the methods

to optimize decisions using these models has been reviewed in [22]. Models

can vary from simple to extremely complex. Current practice is either to

configure an EMS’s battery model using manufacturer specifications or using

data from performance testing during commissioning. However, recent work

has focused on developing adaptive EMS models that learn from operational

data [52,173–175].
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The primary contribution of this chapter is to improve the process for

adaptive EMS modeling. We reduce the prior knowledge of the battery that the

EMS needs to get started, improve the prediction accuracy over alternatives

methods, and to calculate and track modeling uncertainty such that the model

can be used for risk-averse or robust state estimation and control.

The adaptive EMS modeling process is started with the battery’s open-

circuit-voltage at two known states-of-charge (SoC). Using this information

and data collected during daily operation, the adaptive process identifies bat-

tery capacity and efficiency, the open-circuit-voltage function, and the param-

eters of a battery equivalent circuit. Additionally, this process calculates and

tracks the uncertainty of each of its parameters. The model then updates its

parameters at a Bayesian learning rate determined by the candidate model’s

accuracy tested against a subset of the available data. This process has the

benefit of continuing to keep model uncertainty low as battery parameters

change with time and use. The resulting EMS model can then be used for

state estimation and control. The uncertainty parameters make these pro-

cess improvements work with a risk-averse controller design such as the one

presented in [18].

The remainder of this chapter is organized as follows. Section 5.2 intro-

duces the battery model, Section 5.3 discusses the proposed process to update

the EMS model, including the data and methods used to estimate and test

model parameters in situ. The results of applying the proposed process to

a grid scale lithium-ion battery system are discussed in Section 5.4, and our

conclusions are discussed in Section 5.5.
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5.2 Battery Model

In this section we define a battery model that can be parameterized

on-line and used in state estimation and control. The state equations for the

equivalent circuit model presented in Fig. 5.1 are shown below:

v = voc + v1 +Rc i
+ +Rd i

− (5.2.1)

∂v1

∂t
= − v1

R1C1

+
i+ + i−

C1

(5.2.2)

where v is the battery terminal voltage, voc is the open-circuit-voltage, v1 is the

dynamic voltage, t is time, Rc and Rd are the charge/discharge resistances, i+

and i− are the charge/discharge currents, R1 is the dynamic resistance, and C1

is the dynamic capacitance. The open-circuit-voltage function is approximated

using a cubic polynomial as shown below:

voc = ας3 + βς2 + γς + δ (5.2.3)

where ς is the battery SoC, and α, β, γ, and δ are the polynomial coefficients.

The SoC is then a function of the charge and discharge current as shown below:

∂ς

∂t
=
ηci

+ + i−

Ccap

(5.2.4)

where Ccap is the battery’s charge capacity, and ηc is the coulombic efficiency.

The initial parameter set for this model is shown in Table 5.1. While

having initial parameters derived through manufacturer specifications may be

beneficial to initial performance, our initial set is intentionally inaccurate to

demonstrate the learning speed of the process. Only four parameters must be

known or assumed prior to the start of the process: ςmax, ςmin, voc-max, and

voc-min. This is because the maximum and minimum SoC, and their associated
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Figure 5.1: First order equivalent circuit model with distinct charge/discharge
resistances

open-circuit-voltages, reflect the expected use and lifetime of a given cell de-

sign. For example, a manufacturer could sell two physically identical products:

a deep-discharge cell with a voltage range of 2.7-4.2 V and an expected life

of 800 cycles, and a long-lasting cell with a voltage range of 3.2-4.1 V and an

expected life of 10,000 cycles. Because of this convention, defining what max-

imum and minimum SoC means can be an implicit method of incorporating a

cell’s degradation into a control system [13].

5.3 EMS Model Learning Process

For the EMS to be able to configure itself it must be able to learn its

model parameters using the operational data. A summary of the EMS model

learning process is illustrated by the flowchart shown in Fig. 5.2.

5.3.1 Data Requirements

While collecting operational data, a subset of the data are useful for

parameter identification while the remainder either does not provide salient
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Table 5.1: Charge Reservoir Model Initial Parameters

Name Symbol Value
Maximum state-of-
charge*

ςmax 100.0%

Minimum state-of-
charge*

ςmin 0.0%

Open-circuit-voltage at*
ςmax

voc-max 1,027.6 V

Open-circuit-voltage at*
ςmin

voc-min 807.4 V

Charge capacity Ccap 3000 Ah
Coulombic efficiency ηc 1.0
Charge resistance Rc 0.1 Ω
Discharge resistance Rd 0.1 Ω
Dynamic element Capac-
itance

R1 0.1 Ω

Dynamic element resis-
tance

C1 0.1 F

Open-circuit-voltage
parameter 0

α 0.0

Open-circuit-voltage
parameter 1

β 0.0

Open-circuit-voltage
parameter 2

γ 100.0

Open-circuit-voltage
parameter 3

δ 900.0

* These are the only parameters that must be accurate from the start. All
other initial parameters are purposefully inaccurate guesses, intended to
demonstrate the learning speed of the process.
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Figure 5.2: Flow chart of the EMS model learning process
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information or has ill-conditioned measurements that could corrupt results.

For this analysis we assess one day at a time. To qualify for parameter estima-

tion, the data collected from a day must show that the BESS undergoes both

charge and discharge, its range of SoC must be greater than 15%, and it must

not contain any invalid or out-of-range data (e.g. battery voltage < 100 V).

If the day being assessed does not meet these requirements, then the process

simply passes it over to assess the next day.

5.3.2 Parameter Estimation

In this section, we introduce the on-line optimal parameter estimation

process. Samples of voltage, current, and the SoC reported by the BMS are

taken at a variable interval of ∆t[i] to construct the measurement vectors:

battery voltage v, charge current i+, discharge current i− and SoC ς. These

vectors are then fed into the two-part optimization problem shown below:

Part 1, battery capacity and efficiency:

min
x1∈Rn+3

||ς − ς̂||22 (5.3.1a)

subject to :

ĈcapDς̂ = η̂ci
+ + i− (5.3.1b)

where x1 =
{
ς̂, η̂c, Ĉcap

}
∈ Rn+3 is the set of all decision variables in the

estimation of capacity and coulombic efficiency, and n is the number of samples

in the data window.
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Part 2, battery equivalent circuit parameters:

min
x2∈R3n+12

||v − v̂||22 (5.3.2a)

subject to :

v̂ = v̂oc [1:n] + v̂1 [1:n] + R̂+
c i+ + R̂−d i− (5.3.2b)

Dv̂1 = −
v̂1 [1:n]

R̂1 Ĉ1

+
i+ + i−

Ĉ1

(5.3.2c)

v̂oc = α̂ς̂3 + β̂ς̂2 + γ̂ς̂ + δ̂ (5.3.2d)

voc-max = α̂ς3
max + β̂ς2

max + γ̂ςmax + δ̂ (5.3.2e)

voc-min = α̂ς3
min + β̂ς2

min + γ̂ςmin + δ̂ (5.3.2f)

3α̂ς2
hold + 2β̂ςhold + γ̂ ≥ 0 (5.3.2g)

where x2 =
{

v̂, v̂oc, v̂1, R̂c, R̂d, R̂1, Ĉ1, α̂, β̂, γ̂, δ̂
}
∈ R3n+12 is the set of all

decision variables in the parameter estimation, n is the number of samples in

the data window, ςmax and ςmin are the maximum and minimum SoC, voc-max

and voc-min are the open-circuit-voltages associated with the maximum and

minimum SoC, ςhold is a vector of SoC that covers the range from ςmax to ςmin

(this can be the same vector that is used for the open-circuit-voltage holding

values discussed in Section 5.3.4) and the differential matrix D is shown below:

D =∆


−1 1 0 . . 0
0 −1 1 0 . .

. .
. .

0 0 −1 1


n×(n+1)

(5.3.3)

∆ =


1

∆t[1]
0 . . 0

0 1
∆t[2]

0 . .

. .
. . 0
0 0 1

∆t[n]


n×n

(5.3.4)
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where ∆t[i] is the sample period, and ∆ is a square matrix where the diago-

nal is made up of the reciprocal of the sample period at each time step. The

equivalent circuit is modeled in (5.3.2b) and (5.3.2c), the open-circuit-voltage

is estimated in (5.3.2d) with constraints on the maximum and minimum open-

circuit-voltages in (5.3.2e) and (5.3.2f), respectively. The constraint in (5.3.2g)

ensures that the calculated open-circuit-voltage function is monotonically in-

creasing. These problems are solved using pyomo [74,75], and the interior-point

solver ipopt [76]. The critical outcome of this optimization problem is the op-

timal estimated parameter set
{
Ĉcap, η̂c, R̂c, R̂d, R̂1, Ĉ1, α̂, β̂, γ̂, δ̂

}
. These pa-

rameters are used to test the accuracy of the candidate model parameters in

cross validation.

5.3.3 Accuracy Testing

To evaluate the predictive accuracy of an SoC forecasting model we par-

tition the available operational data record into separate training and testing

sets. Both parameter estimation and accuracy testing for an SoC forecasting

model require contiguous operational data. Because we assess one day at a

time, partial days may not meet the data requirements. This means we are

limited to using one full day for parameter estimation and another full day for

accuracy testing. To keep validation data as relevant as possible we use the

scheme illustrated in Fig. 5.3.

After collecting operational data for two days that meet the data re-

quirements, we first estimate the model parameters for the second day (x1

and x2) using (5.3.1) and (5.3.2) respectively. We then simulate day one us-

ing the updated model, recording the root-mean-squared (RMS) and percent
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Figure 5.3: One-and-one validation training and testing sets

forecasting error for the battery voltage according to:

εRMS =

√∑n
k=1(vk − v̂k)2

n
(5.3.5)

ε% =
n∑
k=1

|vk − v̂k|
vk

(5.3.6)

where εRMS is the RMS forecasting error, and ε% is the percent forecasting

error.

5.3.4 Model Update

At each new qualifying day, prior model parameters are updated in the

diction of the newly estimated parameters and by a magnitude proportional

to their accuracy on training data. Accuracy, in this context, is the inverse of

percent error as calculated above, and is used as a proxy for the likelihood of

the parameter set being correct. The update for the model parameters, not
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including the open-circuit-voltage function parameters, is shown below:

Γ = min

{
0.05

ε%

, 0.25

}
(5.3.7a)

Rc = (1− Γ)Rc + Γ
ˆ̂
cR (5.3.7b)

Rd = (1− Γ)Rd + ΓR̂d (5.3.7c)

R1 = (1− Γ)R1 + ΓR̂1 (5.3.7d)

C1 = (1− Γ)C1 + ΓĈ1 (5.3.7e)

Ccap = (1− Γ)Ccap + ΓĈcap (5.3.7f)

ηc = (1− Γ)ηc + Γη̂c (5.3.7g)

where Γ is the learning rate.

The open-circuit-voltage function parameters are updated by first up-

dating a set of holding values for open-circuit-voltage, evenly spaced in the

range form ςmin to ςmax. Each point is updated based on the expression below:

voc−hold(ς) +=

Γ

m

m∑
k=1

N(ς − ςhold-k)
(
α̂ς3

hold-k + β̂ς2
hold-k + γ̂ς3

hold-k + δ̂
)

(5.3.8)

where voc−hold(ς) is the open-circuit-voltage holding value at ς, ςhold-k are the

states-of-charge at which the open-circuit-voltage holding values are located

(iterated by k), N(µ) is the probability density of a standard normal distribu-

tion at distance from the mean µ. The probability density function is acting

as a proxy for the accuracy of the state-of-charge estimate in this update.

Note that parameter values outside of a reasonable range are a sign that

the optimization may have found a non-global minimum. The update stage

is skipped in these cases and the process waits for the next day of qualifying

data.
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5.4 Results

The methods discussed above are applied to the operational data of

a 2 MW, 3.9 MWh lithium-ion battery system in Sterling, MA USA [176].

The system is spit into two sub-batteries which we term batteries 1 and 2

respectively. One year of data were assessed starting on July 13th 2017. The

vast majority of this time, the battery is either supplying high-power, low-

energy services, or the battery is idle, and hence the data do not meet the

requirements for parameter identification. Data from 36 days (roughly 10% of

the sample year) meet the requirements and are used to update the model.

5.4.1 Model Learning

The initial parameters are steadily updated to more accurately forecast

the battery’s SoC and voltage. The EMS model’s capacity parameter for each

battery are shown in Fig. 5.4 displayed as a function of the number of days

that have been processed. For the first ten days or so the learning algorithm

corrects for the error in the initial parameter values. This correction also leads

to a large increase in the modeling uncertainty. After the first ten days, the

capacity only slowly changes, likely as a result of ether battery degradation or

changes in usage that exhibit different performance.

The initial open-circuit-voltage function is a straight line between a

minimum voltage and a maximum voltage. As the model updates, the cubic

function representation for open-circuit-voltage begins to reflect a plateau at

partial SoC, and high slope regions at both high and low SoC. This trend is

illustrated in Fig. 5.5, where the lines get progressively lighter as the model is

updated.

These model changes are reflected in improved forecasting accuracy,
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Figure 5.4: Updates to the capacity parameter for Battery 1 (top), Battery
2 (bottom). One standard deviation of the previous ten values is shown by
upper and lower bounds.

Figure 5.5: Updates to the battery model’s open-circuit-voltage function
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Figure 5.6: EMS model % Error on Baseline Test Data

and improved estimates of model uncertainty. A single day (July 1st, 2018),

was used as a baseline day to test the accuracy of each model as the model

changes. The % error that each model has when applied to the baseline day

is shown in Fig. 5.6. An inconsistent but downward trend can be observed in

the modeling error for each battery. The final model parameters, along with

the uncertainty of each are listed in Table 5.2.

5.5 Summary

This chapter develops a process for using operational data to steadily

improve the accuracy of an EMS model and calculate the modeling uncertainty

for use in risk-averse control. The process starts with an initial parameter set,

which can be based on manufacturer ratings or rough order of magnitude

guesses. This parameter set is significantly smaller than alternative methods.

It then takes operational data and filters out days that do not meet certain re-

quirements for salience and quality. Qualifying data are then used to estimate

candidate model parameters, whose accuracy is then tested on the most recent

qualifying day not used for the estimate. This process improves EMS modeling

accuracy, or at least keeps modeling error low, as qualifying data are supplied
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Table 5.2: Charge Reservoir Model Final Parameters

Name Battery 1 σ1 Battery 2 σ2 Units
Charge capacity 2330.9 11.550 2237.9 38.005 Ah
Coulombic efficiency 0.920 4.6e-2 0.972 7.0e-2
Charge resistance 2.71e-2 1.42e-2 3.55e-2 1.55e-2 Ω
Discharge resistance 9.03e-2 6.46e-3 8.71e-2 8.75e-3 Ω
Dynamic element
resistance

0.466 0.560 6.11e-2 1.82e-2 Ω

Dynamic element
capacitance

18.50 0.648 19.69 0.627 F

Open-circuit-voltage
parameter 0

703.2 743.1

Open-circuit-voltage
parameter 1

-1297.3 -1340.2

Open-circuit-voltage
parameter 2

814.3 817.3

Open-circuit-voltage
parameter 3

807.4 807.4

179



over time and use. By applying this process, the EMS will always have an up-

to-date and accurate model to work with in optimizing charge and discharge.

The parameter uncertainty values estimated through this process enable the

EMS to hedge its operational decisions against the uncertainty of battery per-

formance. If incorporated into an EMS control system, the proposed process

would improve system performance and make the controller more robust to

modeling uncertainty.
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Chapter 6

Risk-Averse Model Predictive Control Design

for Battery Energy Storage Systems

1 When batteries supply behind-the-meter services such as arbitrage or

peak load management, an optimal controller can be designed to minimize the

total electric bill. The state constraints of batteries that ensure safety and

longevity, such as on voltage or state-of-charge, are represented in the model

used to forecast the system’s state dynamics. Control model inaccuracy can

lead to an optimistic shortfall, where the achievable schedule will be costlier

than the schedule derived using the model. To improve control performance

and avoid optimistic shortfall, we develop a novel methodology for high per-

formance, risk-averse battery energy storage controller design. Our method

is based on two contributions. First, the application of a more accurate, but

non-convex, battery system model is enabled by calculating upper and lower

bounds on the globally optimal control solution. Second, the battery model

1D. Rosewater, R. Baldick, and S. Santoso, “Risk-Averse model predictive control de-
sign for battery energy storage systems” IEEE Trans. Smart Grid, September 2019. DOI:
10.1109/TSG.2019.2946130
The dissertator was the principle investigator for this research including initial model char-
acterization from experimental data, derivation of upper and lower optimization bounds,
programming open and closed-loop control simulations for each model, derivation of the
risk averse CRM modification, calculation of simulation results, and writing/editing the ar-
ticle itself. Ross Baldick provided invaluable technical guidance on convexity and bounding
an optimization problem along with multiple rounds of technical review. Surya Santoso
provided editorial guidance and multiple rounds of technical review.
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is then modified to consistently underestimate capacity by a statistically se-

lected margin, thereby hedging its control decisions against normal variations

in battery system performance. The proposed model predictive controller, de-

veloped using this methodology, performs better and is more robust than the

state-of-the-art approach, achieving lower bills for energy customers and being

less susceptible to optimistic shortfall.

Contributions of this chapter were identified as follows: (major) the

application of a more accurate, but non-convex, battery system model is en-

abled by calculating upper and lower bounds on the globally optimal control

solution, and (major) the battery model is then modified to consistently un-

derestimate capacity by a statistically selected margin, thereby hedging its

control decisions against normal variations in battery system performance.

6.1 Introduction

Battery energy storage systems (BESS) are becoming an integral part of

a resilient and efficient electrical system. Distributed energy resources (DER)

such as BESS are able to support the grid through advanced control and

functionality [177]. In addition to responding to local conditions of voltage

and frequency, energy management systems can forecast future conditions of

variables such as price and load to optimally schedule BESS operation. The

time-of-use (ToU) and peak demand charge billing mechanisms are driving the

adoption of BESS in commercial applications in many areas [12]. Both TOU

and demand charge rate structures incentivize costumers to, in aggregate, re-

duce system peak demand, allowing a utility to defer or avoid costly capacity

upgrades [178]. A primary concern in both applications is how to make con-

trol decisions that maximize the value of the BESS to the owner. Optimal
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Figure 6.1: Time-of-use price schedule (top) [10], and electrical load (bottom)
[4]

control of BESS is a challenging problem due to their complexity and the un-

certainty of the underlying chemical processes. The objective of this chapter

is to develop and demonstrate a methodology to design an advanced, energy

management level controller for BESS. We accomplish this by first reducing

model uncertainty, through model improvements, and then by shaping model

uncertainty to impose a risk-averse bias on control decisions.

We introduce the following simple case study to provide a basis for

an optimal control objective function. Note that this is very similar to the

problem statement introduced in Chapter 2.2 except that it is over one week

rather than just a day. Consider a hypothetical commercial electrical customer

billed for power under both ToU and demand charges. This customer decides

to purchase and install a battery to reduce their electrical bill. The energy

contract charges 9¢/kWh during off-peak, 11¢/kWh during partial-peak hours,

and 15¢/kWh during peak [10] according to the schedule shown in Fig. 6.1
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Table 6.1: Summary of Case Study Assumptions
Ownership Commercial Electrical Customer
Load Pro-
file

From the EPRI test circuit ‘Ckt5’
loadshape summer, scaled to a 5
kW peak [4].

ToU Tar-
iff

9¢/kWh off-peak,
11¢/kWh partial-peak hours (9:00
to 21:00 weekdays), 15¢/kWh peak
(12:00 to 18:00 weekdays) [10]

Demand
Tariff

d = $50/kW based on peak net load
[31].

Billing Weekly, 15 minute time steps.

(top). The utility then charges $50/kW service fee (d) according to the peak

net load measured during the billing period. For simplicity we will assume

a weekly billing period for this example, although it would be more typical

to use a monthly or longer period to set the demand charge. This price is

consistent with demand charges in specific localities in California and New

York [31]. The customer’s week ahead load forecast is shown in Fig. 6.1

(bottom). These load data are adapted from the EPRI test circuit ‘Ckt5’

loadshape, July 20th through 26th, normalized to a 5 kW peak [4]. We will

assume that the load and price are known a priori. Without the battery, total

bill would be calculated according to (6.1.1).

fbill = ∆t cT l + max(l) d (6.1.1)

where fbill is the total electric bill, l is the n-length vector of load, c is the

n-length vector of ToU prices, d is the service fee in $/kW for peak net load

measured during the billing period, and •T denotes a vector’s transpose. Unless

otherwise stated, we use a time-step ∆t = 15 minutes (0.25 hours), and n =

672 (1 week). With the addition of a BESS that can supply (−), or absorb
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(+), power p, the customer’s cost can be modified to (6.1.2).

fbill = ∆t cT (l + p) + max(l + p) d (6.1.2)

where p is the battery system power that element wise subtracts from l when

the battery system is discharging. The problem is thus formulated: design a

control algorithm to optimally calculate a vector of battery system power p

that minimizes the customer’s bill fbill without exceeding the battery’s limits,

including those on charge rate and depth-of-discharge. Further, the quality of

the solution will be judged based both on how much it reduces the customer’s

bill and how robust it is to uncertainty.

A common approach to controller design is called model predictive con-

trol (MPC). MPC is a real-time, state-feedback, optimal control approach that

involves solving a finite-horizon online optimization problem at each time step

that results in a sequence of future control actions as well as predictions of

the future states [24, 179, 180]. In designing MPC, the choice of what model

to use can be critical. The simplest BESS model assumes that changes in SoC

are proportional to the energy charged or discharged from ac point of inter-

connection. This approach to optimal control represents the state-of-the-art

and has been used for improving wind farm dispatch in Australian electricity

markets [181], and achieving distribution feeder dispatchability [182]. Another

common approach, based on the need for improved accuracy, is to use a BESS

model that assumes that changes in SoC are proportional to the charge, in

amp-hours, supplied or absorbed by the battery itself. While it has been

used [55, 84, 183], this approach can be difficult because the feasible subspace

it defines is fundamentally non-convex. Historically, the only way to apply

the more accurate model to calculate optimal control schedules was to either
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approximate the model using pseudospectral methods [55], or to use dynamic

programming [84,183]. Further, given the precision of this type of model, the

performance of optimal controllers that rely on it can be sensitive to variations

in battery performance.

This chapter makes two fundamental contributions to the state-of-the-

art: 1) formulation of an optimal controller for a residential lithium-ion battery

system, based on the more accurate charge reservoir model (Section 6.3) with

upper and lower bounds to check the viability of solutions found through

gradient based methods (Section 6.5), and 2) a method to modify the controller

to be risk-averse to variations in battery performance (Section 6.6). In Section

6.7 we demonstrate the improved controller performance, due to using the more

accurate model, and demonstrate how the risk-averse modification makes it

more robust to model uncertainty. Together, these contributions make up an

advanced methodology for designing BESS controllers that perform better and

are more robust than those designed through traditional methods. Section 6.8

summarizes the chapter with a summary of the results and a discussion of the

broad applicability of the proposed control design approach.

6.2 Energy Reservoir Model

Energy Reservoir Model (ERM), first introduced in Chapter 2, refers

to a class of models that calculates SoC as a linear function of energy into and

out of the BESS. The ERM is widely used in battery energy storage control

problems [15, 43, 53, 181, 182] and has the advantage of being linear in charge

and discharge power. This allows for convex, and therefore computationally

efficient, formulations of the optimal control problem. The ERM formulation

used here is shown in (6.2.1). Definitions for parameters are given in Table
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Table 6.2: Energy Reservoir Model Parameters

Name Symbol Value
Energy Capacity* Qcap 5.944 kWh
Energy Efficiency* ηe 61.7%
Maximum Power Discharge pmax 7 kW
Maximum Power Charge pmin 7 kW
Maximum SoC ςmax 95%
Minimum SoC ςmin 20%
Regularization Weight Π1 0.001 $/kW2

* derived from experimental analysis on a residential lithium-ion battery
system

6.2.

min
xe∈R3n+2

∆t cT (l + p+ + p−) + τ d+ Π1||p+ + p−||22 (6.2.1a)

subject to: QcapDς = ηep
+ + p−

ς[1] = ς0 (6.2.1b)

ς[1] = ς[n] (6.2.1c)

[0] ≤ p+ ≤ pmax[1] (6.2.1d)

pmin[1] ≤ p− ≤ [0] (6.2.1e)

ςmin[1] ≤ ς ≤ ςmax[1] (6.2.1f)

l + p+ + p− ≤ τ [1] (6.2.1g)

where xe = {p+,p−, ς, τ} ∈ R3n+2, p+ ∈ Rn
+ is the ac electrical power provided

to charge battery system, p− ∈ Rn
− is the ac electrical power discharged from

the battery system, ς ∈ Rn+1 is the battery SoC, τ ∈ R is the peak demand
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power and the differential matrix D is shown in (6.2.2).

D =
1

∆t


−1 1 0 . . 0
0 −1 1 0 . .

. .
. .

0 0 −1 1


n×(n+1)

(6.2.2)

An `2 norm regularization is applied in (6.2.1a) and scaled by the con-

stant Π1 to even out peak battery power when it is not needed. The constraint

(6.2.1b) ensures that control decisions are made based on the current estimated

SoC (ς0). The constraint (6.2.1c) represents the intuitive assumption that the

BESS will continue to operate after the end of the current control horizon and

that the next period will be similar to this one. While not necessary in closed-

loop implementation, (6.2.1c) makes simulation results easier to interpret and

compare. The application of these constraints is discussed in more detail in

Chapter 2.

6.3 Charge Reservoir Model

Charge Reservoir Model (CRM), first introduced in Chapter 2, refers to

a class of models that calculates SoC as a function of charge (current integrated

over time) into and out of the battery itself. The CRM is also used in battery

energy storage control problems and has the advantage of being more accurate

over a longer time horizon or over larger range of SoC [55]. The disadvantage

of the CRM is that the subspace of feasible solutions is fundamentally non-

convex. Therefore, it is more computationally complex and difficult integrate

into an on-board controller [84]. The CRM formulation used here is shown in

(6.3.1). The parameters for this model are listed in Table 6.3.
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min
xc∈R8n+3

∆t cT (l + p) + τ d+ Π1||p||22 + Π2||vs||1 (6.3.1a)

subject to: φ0p
2 + φ1p + φ2 ≥ pdc (6.3.1b)

pdc = (i+bat + i−bat)vbat (6.3.1c)

vbat = voc [1:n] +R0(i+bat + i−bat) + vs (6.3.1d)

voc = ας3 + βς2 + γς + δ (6.3.1e)

CcapDς = ηci
+
bat + i−bat (6.3.1f)

ς1 = ς0 (6.3.1g)

ς1 = ςn+1 (6.3.1h)

pmin[1] ≤ p ≤ pmax[1] (6.3.1i)

ςmin[1] ≤ ς ≤ ςmax[1] (6.3.1j)

vmin[1] ≤ vbat ≤ vmax[1] (6.3.1k)

[0] ≤ i+bat ≤ imax[1] (6.3.1l)

imin[1] ≤ i−bat ≤ [0] (6.3.1m)

l + p ≤ τ [1] (6.3.1n)

where xc =
{
p,pdc, i

+
bat, i

−
bat,vbat,vs,voc, ς, τ

}
∈ R8n+3, pdc ∈ Rn is the dc

electrical power provided to battery, vbat ∈ Rn is the battery terminal voltage,

vs ∈ Rn
+ is the slack voltage used in calculation of an upper bound, voc ∈ Rn+1

is the battery open-circuit voltage, and τ ∈ R is the peak power demand.

The CRM objective includes a `2 norm power regularization and an `1 norm

slack voltage cost, weighted by the constant Π2. The weight Π2 is chosen,

using a simple trial and error sweep, to be the smallest value that is still

large enough to drive the slack voltage to zero under normal operation. The

CRM includes constraints on inverter conversion efficiency (6.3.1b), Ohm’s law
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Figure 6.2: Open-circuit voltage constraint satisfying (6.3.1e)

relating dc power, voltage and current (6.3.1c), the battery equivalent circuit

model (6.3.1d), and the open-circuit voltage curve (6.3.1e). Note that the

inverter conversion efficiency (6.3.1b) is a convex inequality that collapses to

equality as long as energy prices in the objective are positive. This model

uses the big cell method discussed in [81]. These additional parameters and

constrains allow the CRM to more accurately represent the physical dynamics

of battery systems.

6.4 Extended CRM for Simulation

To perform a pseudo-empirical analysis of the optimal schedules cal-

culated from each model we simulate how the battery system would respond

to each control signal using an extended CRM that incorporates additional

constraints and parameters to improve its accuracy. The simulation model

uses slightly different functions and parameters, enabling an analysis of the

effects of model and parameter uncertainty on controller performance. The

modified constraints are shown in (6.4.1). The parameters for these modified

constraints are shown in Table 6.4.
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Table 6.3: Charge Reservoir Model Parameters

Name Symbol Mean σ
Charge Capacity* Ccap 135.2 Ah 2.6 Ah
Coulombic Efficiency* ηc 94.6% 0.74%
Inverter Efficiency Coefficient* φ0 -4.7865e-07
Inverter Efficiency Coefficient* φ1 0.99107
Inverter Efficiency Coefficient* φ2 -0.0721
Battery Internal Resistance* R0 15.35 mΩ 0.34 mΩ
Maximum Power Discharge pmax 7 kW
Maximum Power Charge pmin 7 kW
Maximum SoC ςmax 95%
Minimum SoC ςmin 20%
Maximum Battery Voltage vmax 58.8 V
Minimum Battery Voltage vmin 46.2 V
Maximum Current Discharge pmax 150 A
Maximum Current Charge pmin 150 A
Regularization Weight Π1 0.001 $/kW2

Slack Voltage Weight Π2 0.035 $/V

Cubic Polynomial
Fit*

α β γ δ

0.2 ≤ ς ≤ 0.95 22.884 -26.339 14.357 47.806

* derived from experimental analysis on a residential lithium-ion battery
system
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vbat =voc + v1 +R0(i+bat + i−bat) (6.4.1a)

Dv1 =
1

R1C1

v1 +
1

C1

(i+bat + i−bat) (6.4.1b)

voc =α(ς) (ς − ζ(ς))3

− β(ς) (ς − ζ(ς))2

− γ(ς) (ς − ζ(ς))− δ(ς) (6.4.1c)

where v1 ∈ Rn is the dynamic voltage component of the battery’s terminal

voltage, ζ : [0, 1] 7→ [0, 1] is a piecewise constant function whose value is equal

to the start of each SoC range when passed values within the range. For ex-

ample, ζ(0.22) = 0.19, and ζ(0.32) = 0.263. This is a common approach to

implementing cubic-splines that keeps coefficient magnitudes relatively low.

The extended CRM uses (6.3.1b), (6.3.1c), and (6.3.1f) through (6.3.1n) from

base model. Constraint (6.3.1d) is modified to (6.4.1a) and the additional con-

straint (6.4.1b) is added to represent the dynamic response of battery voltage

to changes in current. Note that the slack voltage is not needed this model as

it is only used for simulation. Constraint (6.3.1e) is then modified to (6.4.1c)

to more closely approximate the relationship between SoC and open-circuit

voltage with a piecewise cubic-spline fit, as has been shown to be highly accu-

rate [61].

The simulation timestep is 1 second, meaning that it is executed 900

times between controller time steps (with ∆t = 15 minutes). The extended

CRM is implemented in simulation using the Battery-Inverter fleet model dis-

cussed in [184]. The resulting schedules are distinguished by the tags ‘calcu-

lated’, which stands for the optimal schedules calculated using the ERM or

CRM, and ‘achieved’, which stands for the results of simulating the calculated
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Table 6.4: Additional Extended CRM Parameters
Symbol Value

Dynamic Resistance* R1 0.491 Ω
Dynamic Capacitance* C1 1.019 F
Cubic Spline Fit* α β γ δ
0.19 ≤ ς ≤ 0.263 -59.303 5.4337 6.6949 49.7
0.263 ≤ ς ≤ 0.340 -59.303 -7.6235 6.5342 50.197
0.340 ≤ ς ≤ 0.416 124.05 -21.32 4.306 50.628
0.416 ≤ ς ≤ 0.492 8.2153 6.7098 3.2056 50.884
0.492 ≤ ς ≤ 0.568 3.2897 8.5874 4.371 51.171
0.568 ≤ ς ≤ 0.643 242.75 9.3355 5.7297 51.553
0.643 ≤ ς ≤ 0.720 -381.66 64.069 11.247 52.14
0.720 ≤ ς ≤ 0.795 94.732 -24.414 14.311 53.215
0.795 ≤ ς ≤ 0.869 357.11 -3.0923 12.248 54.192
0.869 ≤ ς ≤ 0.95 357.11 75.96 17.625 55.222

* derived from experimental analysis on a residential lithium-ion battery
system

schedule using the extended CRM. The discrepancy between ‘calculated’ and

‘achieved’ schedules is a result of inaccurate parameters and unrepresented

battery system characteristics in the ERM and CRM models.

6.5 Bounding the Global Minimum

The nonlinear CRM optimization problem shown in (6.3.1) is non-

convex. Further, it can be shown that the Lagrangian of this problem is

not pseudoconvex as defined in [185]. If it had either of these properties then

we would know that any minimum found would be in the set of global minima

but as it is, we cannot make this guarantee. Because of this some argue that

gradient based methods such as Newton-Raphson are not viable for CRM op-
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timization due to local minima in the solution space [183]; however, we find

this not to be the case. Our contribution to the state-of-the-art is to bound

the global minimum of this problem such that if we find a local minimum

inside this range, we can be confident that it is, or is close to, the globally

optimal solution. An upper bound to a minimization problem can be found

by restricting the feasible set (adding additional constraints) while a lower

bound can be calculated by expanding the feasible set (relaxing or removing

constraints) [186].

To calculate a convex lower bound we relax the non-convex constraints

to their convex hulls. First, the constraint (6.3.1b) is modified to the include

positive and negative dc power (6.5.1a). We then relax the ohm’s power law

constraint (6.3.1c) to a convex space bounded by eight affine surfaces as shown

in Fig. 6.3 and represented in (6.5.1b) and (6.5.1c). To do this while maintain-

ing feasibility we split the dc power into separate positive and negative decision

variables. Finally, we relax the open-circuit-voltage constraint (6.3.1e) to the

convex hull shown in Fig. 6.2 and represented in (6.5.1d). The resulting convex

problem in (6.5.1) provides a lower bound on the global minimum of (6.3.1).
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Figure 6.3: Convex Relaxation of Ohms Power Law (6.3.1c), split between
positive and negative current

min
xc ∈ R8n+3

p+
dc ∈ Rn+

p−dc ∈ Rn−

∆t cT (l + p) + τ d+ Π1||p||22 + Π2||vs||1

subject to:
... (6.3.1d) and (6.3.1f) through (6.3.1n) unchanged

relaxing (6.3.1b) φ0p
2 + φ1p + φ2 ≥ p+

dc + p−dc (6.5.1a)

relaxing (6.3.1c) A1[i+bat, vbat, p+
dc]

T ≤ b1[1]1×n (6.5.1b)

A2[i−bat, vbat, p−dc]
T ≤ b2[1]1×n (6.5.1c)

relaxing (6.3.1e) A3[ς, voc]
T ≤ b3[1]1×n (6.5.1d)

where p+
dc and p−dc are the charge and discharge dc powers respectively.

To calculate an upper bound we restrict battery terminal voltage to a

constant (vbat = vocmin). The slack voltage allows the battery equivalent circuit
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(6.5.2b) to become non-binding, thereby making the fixed voltage restriction

feasible. To efficiently calculate the global minimum of the upper bound we use

a piecewise linear approximation of the open circuit-voltage function, as shown

in (6.5.2c) through (6.5.2j). This approximation makes the upper bound a

mixed-integer nonlinear program (MINLP) with a convex objective and convex

constraint functions, for which there exist effective exact solution algorithms

[186]. Given that the approximation embodied in the piecewise linearization

is fairly accurate, we expect that the resulting solution will be a useful upper

bound to the original, non-convex problem.

min
xc ∈ R8n+3

ν1−5 ∈ Rn+1
+

ς1−5 ∈ Rn+1
+

w1−5 ∈ {0, 1}n+1

∆t cT (l + p) + τ d+ Π1||p||22 + Π2||vs||1

subject to:
... (6.3.1b) and (6.3.1f) through (6.3.1n) unchanged

restricting (6.3.1c) pdc = (i+bat + i−bat)vocmin (6.5.2a)

restricting (6.3.1d) vocmin[1] = voc [1:n] +R0(i+bat + i−bat) + vs (6.5.2b)

approx. (6.3.1e) voc = vocmin[1] + ν1 + ν2 + ν3 + ν4 + ν5 (6.5.2c)

ς = ςmin[1] + ς1 + ς2 + ς3 + ς4 + ς5 (6.5.2d)

[ν1, ν2, ν3, ν4, ν5]T = A4[ς1, ς2, ς3, ς4, ς5]T (6.5.2e)
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ςsegw1 ≤ς1 ≤ ςseg (6.5.2f)

ςsegw2 ≤ς2 ≤ ςsegw1 (6.5.2g)

ςsegw3 ≤ς3 ≤ ςsegw2 (6.5.2h)

ςsegw4 ≤ς4 ≤ ςsegw3 (6.5.2i)

0 ≤ς5 ≤ ςsegw4 (6.5.2j)

where ν1, ν2, ν3, ν4, ν5 ∈ Rn
+ are the linear segment voltages, ς1, ς2, ς3, ς4, ς5 ∈

Rn
+ are the linear segment states-of-charge, w1, w2, w3, w4 ∈ {0, 1}n are

Boolean variables that ensure that the segments maintain correct ordering.

With these bounds and properties established, we can use an off-the-

shelf primal-dual, interior-point method to solve the optimal control problem

using the CRM. The freely downloadable modeling language Pyomo [74, 75]

and nonlinear solver Ipopt [76] are used to implement this algorithm efficiently.

The nonlinear solver Gurobi is used for calculation of the upper bound as it is

able to efficiently work with integer variables [187].

6.6 Reducing Control Sensitivity to Uncertainty

Parameters such as capacity are functions of many physical mechanisms

we do not consider in the model. To consider this uncertainty, we break

capacity2 into its mean value and a random component as shown in (6.6.1).

(Ccap + C̃cap)Dς = ηci
+
bat + i−bat (6.6.1)

where C̃cap ∼ N(µ = 0, σ = 2.6Ah) is the random component of the battery’s

capacity, assumed to be a zero-mean, normal distribution.

2The uncertainty of coulombic efficiency and internal resistance parameters are also listed
in Table 6.3. The effects of these uncertainties is negligible for the example application when
compared to the capacity.

197



Table 6.5: Convex Relaxation and Approximation Parameters

Ohm’s Power Law Relaxation

A1 =


0.0462 0.15 −1.0
0.0588 0 −1.0
0.0462 0 −1.0
0.0588 0.15 −1.0

 b1 =


6.93

0
0

8.82


A2 =


0.0462 0 −1.0
0.0588 −0.15 −1.0
0.0462 −0.15 −1.0
0.0588 0 −1.0

 b2 =


0

−8.82
−6.93

0


Open Circuit Voltage Relaxation

A3 =



4.900 −1.0
5.796 −1.0
7.741 −1.0
10.479 −1.0
14.009 −1.0
18.333 −1.0
23.450 −1.0
−9.941 1.0


b3 =



−48.809
−48.366
−47.258
−45.489
−42.940
−39.490
−35.0178

47.851


Open Circuit Voltage Piecewise
Linear Approximation
A4 =

[
5.3350 4.4656 6.7686 12.2438 20.8913

]
vocmin= 49.74 V
ςmin= 19%
ςseg= 15.2%
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Price arbitrage has symmetric risk, meaning that overestimating ca-

pacity is just as bad as underestimating capacity. Peak demand charge man-

agement, in contrast, has asymmetric risk, in that the down-side of overesti-

mating capacity is larger in magnitude than the down-side of underestimating

capacity. Because of asymmetric risk, we expect a risk-neutral controller to

have a skewed performance distribution as shown in Fig. 6.4. We modify the

proposed controller to consider asymmetric risk. The value-at-risk constraint

needed for this modification is shown in (6.6.2).

Ĉcap = min{Ccap ∈ R |P(C̃cap ≤ Ccap) ≥ 0.13%} (6.6.2)

where Ĉcap is the value-at-risk capacity, and P is the probability function. Be-

cause of our assumption that the capacity has a normal distribution, calculat-

ing the value-at-risk is trivial in that we can use lookup tables to determine how

many standard deviations from the mean will yield a risk of 0.13% (-3σ from

the table supplied in [188]). By using Ĉcap = 135.2 Ah−3×2.6 Ah = 127.4 Ah,

we design the controller to consistently underestimate the battery’s capacity,

thereby making its control decisions robust to fluctuations in capacity. Due to

this modification, we expect that a risk-averse controller will have performance

distribution with reduced downside risk, in exchange for slightly reduced av-

erage performance, as illustrated in Fig. 6.4.

As described above some services have asymmetric risk of overestimat-

ing or underestimating capacity. The degree of this asymmetry corresponds to

the potential advantage of risk-averse control. For example: backup power for

a critical load has an extreme imbalance in cost between not having sufficient

energy and having more than enough energy. Because of this, the intuitive

risk-averse control solution is to maintain full charge at all times.
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Figure 6.4: Notional examples of risk-neutral and risk-averse control bill sav-
ings probability density functions

Additionally, the accuracy and precision of the BESS model is impor-

tant to consider as illustrated in Fig. 6.5. Model accuracy refers to how close

the mean estimated capacity parameter is to the capacity expressed during the

control horizon (in our case, the extended CRM used in simulation). Precision

is a measure of how consistent the BESS capacity is in this application. If

the model consistently underestimates or overestimates available energy, low

accuracy with high precision, then the marginal benefit of risk-averse control

will be negligible. If the model has high accuracy and precision then there is

only a small margin for improvement. For controllers with low accuracy and

precision, performance consistency comes at a large cost in average perfor-

mance. It is the case where the BESS model has high accuracy, and relatively

low precision where risk-averse control is most useful because it is able to

hedge decisions for uncertainties in performance. Such controllers can achieve

consistency with only a small sacrifice in average performance.

To assess the sensitivity of the proposed controller to off normal circum-

stances we use the optimistic shortfall. Optimistic shortfall is the difference

between expected controller performance and achieved controller performance,

which in our case is the total bill achieved minus the calculated optimal bill. In
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Figure 6.5: Relative benefits of risk-averse control based on model accu-
racy/precision, given an asymmetric risk application

Fig. 6.4, the risk-neutral controller would have significant optimistic shortfall

in the ‘extreme case’ (C̃cap = −3σ), whereas the risk-averse controller would

have low optimistic shortfall throughout the normal range of battery capacity.

6.7 Results

This section explains the results of simulated control action calculated

using the ERM, CRM, and Risk-Averse (RA) CRM as discussed above, applied

to the extended CRM model of the BESS as a pseudo-empirical analysis of

controller performance and sensitivity to parameter uncertainty. Open-loop

control is assessed first to provide a baseline controller performance and a

clear picture of the effect that uncertainty has on control. The closed-loop,

model predictive controllers are then assessed for their ability to reduce the

effects of uncertainty under normal operations and reduce optimistic shortfall.

The effects of extreme case parameters are then analyzed to illustrate that risk-

averse control design is needed to make the controller robust to the normal

variations in system performance. Last, the performance of the proposed risk-

averse controller is analyzed. A summary of the customer bill, % savings, and

optimistic shortfall under each simulation scenario is shown in Table 6.6.
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Table 6.6: Summary of Results from Simulated Control Scenarios

Controller Sce-
nario

Sim-Model*
Total
Bill

% Sav-
ings

Optimistic
Short-
fall**

Baseline – $310.88 –
ERM OL Cal – $274.91 11.6% –
ERM OL Ach mean $273.93 11.9% -$0.98
ERM CL Ach mean $273.56 12.0% -$1.35
ERM CL Ach extreme $273.69 12.0% -$1.22
–upper bound
CRM OL Cal
–lower bound

–
–
–

$272.72X
$269.55
$228.89X

13.3% –

CRM OL Ach mean $274.98 11.5% $5.43
CRM CL Ach mean $269.55 13.3% $0.00
CRM CL Ach extreme $292.53 5.9% $22.98
–upper bound
RA CRM OL Cal
–lower bound

–
–
–

$274.21X
$271.22
$235.35X

12.8% –

RA CRM OL Ach mean $271.17 12.8% -$0.05
RA CRM CL Ach mean $271.08 12.8% -$0.14
RA CRM CL Ach extreme $271.21 12.8% -$0.01

Xdenotes that the solution to the non-convex problem satisfies the bound
* The extended CRM is used to simulate the BESS being controlled. It’s
parameters are selected to represent average behavior ‘mean’, or ‘extreme
case’ lower than normal available energy as described in Section 6.6
** Optimistic Shortfall compares the bill achieved by applying control action
to the simulated BESS to the open-loop calculated bill from each controller
Cal - calculated, Ach - achieved, OL - open-loop, CL - closed-loop, RA -
risk-averse
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6.7.1 Open-Loop Control

The optimal ‘calculated’ schedules, along with the ‘achieved’ schedules,

for the customer using the ERM and CRM in open-loop are shown in Fig. 6.6.

The resulting net load curves for their control schedules are shown in Fig. 6.7

and 6.8. While the ERM is clearly more computationally efficient than the

CRM, optimal schedules can be calculated using either model in just a few

seconds on a mid-range laptop (hardware used for this study: i7-7600U CPU

at 2.8 GHz) meaning either approach could be used for on-board control.

For the customer introduced in the introduction to this chapter, the

baseline cost of electrical service is $311 ($61 energy, $250 peak demand).

The schedule calculated using the ERM reduces this by 11.6% to $275. The

schedule calculated using the CRM reduces the cost of electrical service by

13.3% to $270. These bill reductions come primarily from the BESS reducing

the peak electrical load by 14.38% (ERM) and 16.0% (CRM) respectively. As

this bill falls between the calculated upper and lower bounds on the global

minimum, we are confident that the minimum calculated is, or is close to,

the global. While a $5 improvement in savings over the ERM does not sound

significant in absolute terms, it is important to remember the scale of power

systems. With approximately 5 million commercial customers in the U.S.

currently eligible for tariffs with a demand charge rate of at least $15/kW [31],

a 14.7% improvement in cost savings, over the ERM, from a simple change

in software would have a significant impact. Note that a IEEE 1547-2018

compliant inverter would be able support local grid voltage with volt-var [177],

or the voltage smoothing method described in Chapter 8, while applying this

control schedule.

While the CRM more accurately forecasts SoC, in this case, improved
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accuracy makes the CRM more susceptible than the ERM to overestimating

future SoC and hence not being able to supply sufficient energy during the

critical peak. This phenomena is illustrated in Fig. 6.8 where the achieved

net load, derived by simulating the extended CRM using the calculated power

schedule, has a peak significantly higher than the calculated net load. The

gap between calculated and achieved net load schedules comes from the BESS

being unable to supply sufficient energy to shave the complete peak, needing to

curtail its discharge prematurely. This gap creates a large optimistic shortfall,

where the achieved bill is $5.43 higher than the calculated bill. We demonstrate

in the next section that this optimistic shortfall can be mostly eliminated with

closed loop control.

6.7.2 Closed-Loop control

Closed-loop control recalculates the optimal schedule at each time step.

The net loads achieved by both closed-loop ERM and CRM based controllers

are shown in Fig. 6.9. When implemented on the ERM, closed-loop control

generates a small negative optimistic shortfall (optimistic surplus). This is

because, as it starts to shave the peak load at a level based on its underes-

timation of capacity, the SoC is updated and the controller has more energy

to work with than expected. It then applies this excess energy to a discharge

during the window of peak ToU price that is coincident with peak load. The

CRM based model predictive controller reduces the optimistic shortfall from

$5.43 (open-loop, see Fig. 6.8) to $0.00 (closed-loop). This is a result of the

open-loop controller not supplying sufficient charge to reach ςmax before the

beginning of the peak. The closed-loop controller is able to adjust for the

insufficient charge and have enough energy to shave the peak completely.
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Figure 6.6: Optimal SoC schedules calculated and achieved in open-loop con-
trol from ERM (top), and CRM (bottom)

Figure 6.7: Optimal customer net-load results for the ERM in open-loop

Figure 6.8: Optimal customer net-load results for the CRM in open-loop
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Figure 6.9: Closed-Loop Control Results for ERM and CRM

6.7.3 Risk-Averse Closed-Loop Control

The physical parameters of a BESS vary under normal operation and

these variations can have a large impact on the optimistic shortfall of a con-

troller. Fig. 6.10 shows the sensitivity of the total bill achieved by the CRM

and RA CRM due to variations in capacity. When the battery’s capacity is at

its mean value and above (µ, +1σ, +2σ, and +3σ), the risk-neutral CRM has

a slight performance advantage. However, when the battery’s capacity is be-

low expectations (−1σ, −2σ, and −3σ), the risk-neutral CRM’s performance

drops off, producing an optimistic shortfall up to $22.98 in the ‘extreme case’

at C̃cap = −3σ, while the performance of the risk-averse controller does not

decline. In terms of peak net load reduction, the risk-neutral controller is only

50% confident it will reduce the peak by 16.0%, but it has a roughly one in six

chance it will reduce the peak less than 14%. In contrast, the risk-averse con-

troller is 99.87% confident that it can reduce the peak by 15.4%. This achieves

the goal of making the controller more robust to battery model uncertainty.
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Figure 6.10: Control performance sensitivity of the risk-neutral and risk-averse
CRM based model predictive controllers (compare to the ideal in Fig. 6.4).
Probability refers to the likelihood that the capacity is less than the signified
value. When total bills resulting from different capacity values are very close
(within 25¢), their probabilities are added, and the total bill is averaged.

6.8 Summary

In this chapter we develop and demonstrate an advanced methodology

for designing BESS controllers under ToU price arbitrage and peak demand

charge management applications. A state-of-the-art ERM is used as the base-

line for control performance comparison. The proposed CRM based model

predictive controller outperforms the ERM based controller by achieving a

lower total electric bill when pseudo-empirically applied in an example sce-

nario. Because peak load management has asymmetric risk for overestimating

available energy, we then shape the uncertainty of the CRM to consistently

underestimate capacity. This risk-averse CRM yields better controller perfor-

mance than the ERM and is more robust to variations in BESS performance

than the CRM. This methodology for designing BESS controllers can be ap-

plied in a broad range of energy storage applications, wherever the risk profile

of a scheduled service is asymmetric. Incremental improvements in controller

performance can reduce the cost of deploying storage to make the grid more

efficient and resilient.
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Chapter 7

Optimal Field Voltage and Energy Storage

Control for Stabilizing Synchronous

Generators on Flexible AC Transmission

Systems

1 Power systems can become unstable under transient periods such as

short-circuit faults, leading to equipment damage and large scale blackouts.

Power system stabilizers (PSS) can be designed to improve the stability of

generators by quickly regulating the exciter field voltage to damp the swings

of generator rotor angle and speed. The stability achieved through exciter field

voltage control can be further improved with a relatively small, fast respond-

ing energy storage system (ESS) connected at the terminals of the generator

that enables electrical power damping. PSS are designed and studied using

a single-machine infinite-bus (SMIB) model. In this chapter, we present a

comprehensive optimal-control design for a flexible ac synchronous generator

PSS using both exciter field voltage and ESS control including estimation of

1D. Rosewater, Q. Nguyen and S. Santoso, “Optimal Field Voltage and Energy Storage
Control for Stabilizing Synchronous Generators on Flexible AC Transmission Systems,” in
Proc 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T& D),
Denver, CO, 2018, pp. 1-9. doi: 10.1109/TDC.2018.8440436
The dissertator and Quan Nguyen were partners in performing this research, which was
developed out of a final class project. The dissertator took lead on writting the initial draft
of the report while Quan Nguyen developed most of the figures. Surya Santoso provided
editorial guidance and multiple rounds of technical review.
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unmeasurable states. The controller is designed to minimize disturbances in

rotor frequency and angle, and thereby improve stability. The design process

is based on a linear quadratic regulator of the SMIB model with a test system

linearized about different operating frequencies in the range 10 Hz to 60 Hz.

The optimal performance of the PSS is demonstrated along with the resulting

stability improvement.

Contributions of this chapter were identified as follows: (minor) de-

signed and demonstrated an advanced controller that is able to optimally sta-

bilize a synchronous generator, over a rang of frequencies, using both field

voltage and a co-located energy storage system.

7.1 Introduction

Dynamic response in power systems can become unstable, leading to

equipment damage and large scale blackouts. Power system stabilizers (PSS)

improve the dynamic response of generators by modulating the exciter field

voltage. The exciter field in a generator links the mechanical power of the

rotor to the electrical power transmitted and used by the grid. AYbus PSS

takes measurements of the system states, including the rotor speed, rotor

angle, and field voltage of the generator, and calculates a control signal for

the reference field voltage that improves the stability of the generator. PSS

implementation allows generators to operate at higher power output, over

longer, weaker transmission lines, thereby improving the profitability of the

capital investment.

Two strategies are employed in this chapter to further improve gener-

ator dynamic stability: low-frequency power transmission and energy storage

power damping. Low-frequency high-voltage ac (LF-HVac) transmission has
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recently been proposed as an alternative solution to conventional 60-Hz HVac

and the high-voltage direct-current (HVdc) approaches for bulk power trans-

fer. LF-HVac transmission not only retains the ability of using existing ac de-

vices, reliable protection schemes, and multi-terminal structure from the 60-Hz

HVac but also provide better voltage regulation and system stability [189]. In

addition, LF-HVac approximates the high power transfer capability of HVdc

transmission if the operating frequency is sufficiently low [190]. Energy storage

systems (ESS) can also be used to improve the performance of PSS and fur-

ther stabilize the grid. An ESS co-located with a generator enables additional

control over the power transferred to the grid and modulating its power can

improve the dynamic response of the system [191].

This chapter investigates the intersection of both of these strategies,

along with modern control for PSS, to evaluate the improvement of system

stability when they are employed together. The closed-loop optimal design in-

cludes a linear quadratic regulator (LQR) [165] and a reduced order observer to

account for the difficulty in measuring states such as the quadrature transient

terminal voltage of the generator. The proposed analysis can be extended to

multi-machine systems.

In the remainder of this chapter, Section II describes the structure of the

system under consideration and its state space model. Section III elaborates

on the design of the optimal closed-loop controller as well as the reduced-

order observer for the PSS. The simulation results and discussion on system

responses under various operating conditions are in Section IV. Section V

completes the chapter with a conclusion.
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Figure 7.1: The model of a single electric machine connected to a infinite bus
with PSS and ESS.

7.2 System Modeling

In [192] a PSS is designed using a simple model of a single machine

oscillating with an infinite bus (SMIB). The PSS, with ESS enhancement, is

designed and studied through a modified SMIB model in Fig. 7.1. This model

uses an ideal bus, defined to have constant voltage Vinf at angle 0◦, to rep-

resent the grid. Connected to this bus, by way of a transmission line, is a

generator with scalar terminal voltage V1 at angle θ. The internal voltage

leads the voltage at the infinite bus by the angle δ. For simplicity of design-

ing optimal controllers, generator parameters such as voltage and current are

translated from the three-phase sinusoidal abc frame into the synchronously

rotating frame with direct and quadrature components.

The following notation is used throughout this chapter:
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∆E
′
q perturbed quadrature-axis transient

voltage of the generator,
∆δ perturbed rotor angle,
∆ω normalized perturbed rotor angular ve-

locity;
∆Efd d-axis component of the perturbed field

voltage in the excitation coil,
∆Pess perturbed power supplied (+) or ab-

sorbed (-) by the ESS,
KA, TA machine amplifier gain and time con-

stant,
TM mechanical torque applied to the shaft,
T

′

do direct-axis open-circuit transient time
constant of the generator,

Vref reference steady-state value of terminal
voltage,

Pref reference steady-state value of ESS
power,

H,D shaft inertia and damping of the gener-
ator.

7.2.1 SMIB Model Equations

The model of SMIB system includes machine differential equations, sta-

tor equations, network equations, and ESS equations. In the machine model,

the exciter coils generate the magnetic field that enables the spinning rotor

to produce electrical voltage on the stator coils. These electromagnetic dy-

namics are represented in (7.2.1). The limits placed on Efd represent safety

restrictions on the field voltage and are strictly imposed. The stator equations

(7.2.2) govern how energy in the rotor is transferred from and to the stator,

while the network equations (7.2.3) represent the power transfer across the

transmission line between the generator and the infinite bus. The first order

response dynamics, energy function, and power limits of the ESS are shown in
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(7.2.4). This adaptation of the ESS model from [193] ignores reactive power,

auxiliary power, and the dynamic converter model. ESS energy limits are an

output of simulation to be used as design requirements for a practical ESS,

and charge/discharge power limits are held constant and is strictly imposed

in simulation to explore the effect of ESS power saturation on the controller’s

performance.

Machine equations [192]:

δ̇ = ∆ωpuωs,

ω̇pu =
1

2H

[
TM − (E

′

qIq + (Xd −X
′

d)IdIq +D∆ωpu)
]
,

Ė
′

q =
1

Tdo
(−E ′

q − (Xd −X
′

d)Id + Efd),

Efd,min ≤ Efd ≤ Efd,max. (7.2.1)

Stator equations [192]:

XqIq − Vd = 0,

E
′

q − Vq −X
′

qIq = 0. (7.2.2)

Network equations [192]:

ReId −XeIq = Vd − Vinfsinδ,

XeId +ReIq = Vq − Vinfcosδ. (7.2.3)

Energy storage equations [193]:

Pess =
Pref

1 + sTess
,

Ėess = Pess,

Pess,min ≤ Pess ≤ Pess,max. (7.2.4)
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Figure 7.2: Block diagram representing the system shown in Fig 7.1.
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7.2.2 State Space Model

Based on (7.2.1) - (7.2.4), the linearized state-space model of the SMIB

is shown in (7.2.5) and (7.2.6), where K1-K6 are given from [192] and new

coefficients Kp, Kq, and Kv are given in [191]. The values of these coefficients

depends on the reactances Xq, Xd, X
′

d, and Xe as well as the shaft inertial

constant H. While the reactances are each proportional to the operating

frequency, H is proportional to the operating frequency squared [192]. The

block diagram of the system is shown in Fig. 7.2, which is the combination

of the classical PSS model and the integrated ESS model. In addition to the

only control input ∆Vref in the classical SMIB model, (7.2.5) has another

control input ∆Pref , which represents the control signal sent to the ESS. The

saturation limits on the field voltage Efd and ESS power Pess are imposed.

The state space output z is a 4× 1 vector that represents the four measurable

states. As ∆E
′
q is assumed to be unmeasurable in this design, the first column

of the C matrix is zeros.



∆Ė
′
q

∆δ̇

∆ω̇

∆Ėfd

∆Ṗess


=



− 1

K3T
′
do

−K4

T
′
do

0 1

T
′
do

Kq

T
′
do

0 0 ωs 0 0

−K2

2H
−K1

2H
−Dωs

2H
0 Kp

2H

−KAK6

TA
−KAK5

TA
0 − 1

TA
−KAKv

TA

0 0 0 0 − 1
Tess



×


∆E

′
q

∆δ
∆ω

∆Efd
∆Pess

+


0 0
0 0
0 0
KA

TA
0

0 1
Tess


[

∆Vref
∆Pref

]
, (7.2.5)
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z = Cx =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




∆E
′
q

∆δ

∆ω

∆Efd

∆Pess

 . (7.2.6)

7.3 Optimal Controller Design

7.3.1 The LQR Optimal Controller

A closed-loop controller is designed to improve the stability of the SMIB

systems by changing the eigenvalues of the open-loop system to desired val-

ues. This controller is designed to minimize a performance index, which is

chosen based on the specific requirements of the system and its application.

In this chapter, the performance index in (7.3.1) is defined to minimize the

disturbances in rotor frequency ∆ω and angle ∆δ as well as the control inputs

∆Vref and ∆Pref :

L =
1

2

∫ ∞
0

[
(∆δ)2 + (∆ω)2 + r1(∆Vref )2 + r2(∆Pref )

2

]
dt (7.3.1)

Positive definite weights r1 and r2 are applied to the input variables which

enable adjustment of their relative and absolute utilization by the controller.

The optimal control u∗ which minimizes (7.3.1) is determined as follows [165]:

u∗ = −Kx,

K = R−1BTS∗, (7.3.2)

where:

R =

[
r1 0
0 r2

]
, (7.3.3)
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and S∗ is the steady-state solution of the matrix Ricattii equation, which is

defined as follows [165]:

Ṡ = −SA−ATS−Q + SBR−1BTS = 0. (7.3.4)

With this optimal control, the closed-loop eigenvalues are calculated as follows:

|λI− (A−BK)| = 0. (7.3.5)

7.3.2 Reduced Order Observer Design

In practice, measuring the quadrature transient terminal voltage of

the generator is not trivial. Therefore, in this design, it is assumed that

∆E
′
q is unmeasurable in that there is no sensor that is able to feed data to a

controller. Therefore, ∆E
′
q needs to be estimated based on the measurements

of the other states along with the system state equations in (7.2.5) and (7.2.6).

A reduced order observer used to estimate the value of ∆E
′
q is designed as

follows. Let the observer ϕ = ∆E
′
q be a linear combination of system states

that is unmeasurable and independent of the measurements z:

ϕ = Tx⇒ ϕ̇ = Tẋ = TAx + TBu (7.3.6)

where T = [t1 t2 t3 t4 t5] is unknown and [T C]T is nonsingular. From (7.2.6)

and (7.3.6), the system states can be determined as follows:

x =

[
T
C

]−1 [
ϕ
z

]
=
[
S1 S2

] [ϕ
z

]
= S1ϕ+ S2z. (7.3.7)

Substituting (7.3.7) into (7.3.6) yields:

ϕ̇ = Tẋ = TAS1ϕ+ TAS2z + TBu (7.3.8)
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Let ϕ̂ and x̂ are the estimated values of ϕ and the system states. From (7.3.7)

and (7.3.8), their estimation errors ϕ̃ and x̃ satisfy the following equations:

˙̃ϕ = ϕ̇− ˙̂ϕ = TAS1(ϕ− ϕ̂) = TAS1ϕ̃, (7.3.9)

and:

˙̃x = S1ϕ̇ = S1TAS1ϕ̃ = S1TAx̃ = (I− S1C)Ax̃ (7.3.10)

The coefficient matrix (I− S1C)A has the following non-zero eigenvalue:

λobs =
1

K3T
′
do

− t3
t1

K2

2H
− t4
t1

KAK6

TA
. (7.3.11)

In order to guarantee system stability when the observer is implemented, the

eigenvalue in (7.3.11) is chosen to be much faster than the eigenvalues of the

closed-loop system obtained in the previous section.

7.4 Simulation Results

This section shows the response of a test system, as shown in Fig. 7.1,

without and with the designed optimal controllers described in Section III.

The effect of the operating frequency on the response of the system under

disturbances is also included. The remainder of this section addresses the

effect of weighting factors in the performance index on the system response.

The parameters of the test system at 60 Hz are T
′

do = 9.6 sec, KA =

400, D = 0, Xq = 2.1 p.u, Xd = 2.5 p.u, X
′

d = 0.39 p.u, H = 3.2, TA = 0.2

sec, and Tess = 0.01667 sec, Re = 0, Xe = 0.5, Vt = 1 p.u, θt = 15◦, V∞ = 1.05

p.u, θ∞ = 0◦ [192]. These values are consistent with a high-speed water wheel

or non-condensing turbine generator with a 100 MVA rating. The state limits

are Efd,min = -0.5 p.u, Efd,max = 0.5 p.u, Pess,min = -0.1 p.u, and Pess,max =

0.1 p.u.
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Table 7.1: Open-loop settling time performace
State 60 Hz 50 Hz 40 Hz 30 Hz 20 Hz 10 Hz

∆δ(sec.) 63.3655 17.0457 15.8578 35.4401 ∞ ∞
∆ω(sec.) 62.7212 17.2029 15.9886 35.5478 ∞ ∞

7.4.1 The Open-Loop System Response

At a frequency of 60 Hz the open-loop eigenvalues of the system without

any closed-loop controllers are:

λ1 = −60, λ2,3 = −2.588± j8.502, λ4,5 = −0.087± j7.114.

The eigenvalues of the open-loop system have negative real parts; therefore, the

system is stable. However, λ4 and λ5 are close to zero, which means that the

system might become unstable under large disturbances. λ1 is the eigenvalue

of the ESS controller. Table 7.1 shows the settling times for the open-loop

system from 60 Hz to 10 Hz. Settling time is measured as the time it takes

for the states to enter and remain in a 2% error band. Reducing the operating

frequency from 60 Hz to 40 Hz results in shorter settling times. Settling time

then increases at 30 Hz and becomes unstable below 20 Hz.

7.4.2 The Closed-Loop System Response

The rotor speed is assumed to have a initial disturbance of 0.12 Hz.

The weighting factors of the input controls ∆Vref and ∆Pref in (7.3.1) are

chosen to be r1 = 1 and r2 = 0.01, respectively. With the closed-loop optimal
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Figure 7.3: Observer performance.

control described in Section III.A, the eigenvalues of the 60 Hz system become:

λ1 = −52.428, λ2 = −28.245,

λ3 = −13.920, λ4,5 = −4.974± j10.537.

Since these eigenvalues are pushed further from the imaginary axis, the sta-

bility of the system is improved.

The reduced order observer described in Section III.B is determined by

first choosing t2 = t5 = 0 and t3 = t4 = 1, and then solving for t1 using (7.3.11).

With the eigenvalue of the observer being λobs = −300, the performance of the

observer when the operating frequency is 60 Hz is shown in Fig. 7.3. The initial

error between the actual and estimated values of the quadrature transient

terminal voltage of the generator becomes zero shortly after 0.1 seconds.

With the designed reduced order observer, the response of the states

and the optimal input controls to the initial rotor speed disturbance of 0.12 Hz

at different operating frequencies is shown in Fig. 7.4. The optimal control is
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Figure 7.4: The response of states at each frequency of interest.

Figure 7.5: Optimal controls.
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Table 7.2: Closed-loop settling time performace
State 60 Hz 50 Hz 40 Hz 30 Hz 20 Hz 10 Hz

∆δ(sec.) 0.8755 0.7724 0.6608 0.6490 0.5130 0.3395

∆ω(sec.) 0.9214 0.8188 0.7095 0.5875 0.5371 0.3581

shown in Fig. 7.5, where a lower input control is needed at a lower frequency.

Table 7.2 shows the improved settling time response of the rotor speed and

angles. Compared to the open-loop response, the closed-loop controller im-

proves the settling time by more than a factor of 60 at 60 Hz. It is also able to

stabilize the system at operating frequencies lower than 20 Hz while continuing

to improve the settling time.

Fig. 7.6 shows the energy required from the ESS at different operating

frequencies to suppress the oscillations in rotor speed. At 60 Hz, the ESS has

a peak change in energy of 0.0119 p.u power seconds. This would mean that

a 100 MVA generator at 60 Hz would require 1.19 MW-seconds (19.8 kWh)

of energy supplied/absorbed from storage to achieve this performance. Lower

frequencies require less energy reserves to supply the desired damping. The

same generator operating at 10 Hz would only require 230 kW-seconds (3.83

kWh) of energy to achieve this performance.

7.4.3 The Effect of Weighting Factors in the Performance Index

This section shows the effects of adjusting the input weighting factors

in the LQR performance index (7.3.1). Fig. 7.7 shows the response of rotor

speed and angle when the weighting factor r2 of ∆Pref increases from 0.01 as

in the previous studies to 0.5, and then to ∞. r2 = ∞ represents the case
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Figure 7.6: Energy storage response

Table 7.3: Settling time performance with reduced ESS control action
State r2 = 0.01 r2 = 0.5 r2 =∞
∆δ(sec.) 0.8755 1.9639 5.2233

∆ω(sec.) 0.9214 1.8569 5.3269

where the ESS is not utilized as any non-zero input to ∆Pref would drive

the performance index to ∞. The coefficients of the other components are

kept constant, and the operating frequency is 60 Hz. Practically, this allows

designers to adjust the requirements of the energy storage system to reach a

stability performance target. Reducing r2 results in a higher deployment the

ESS, which improves the stability performance of the system. Table 7.3 shows

the settling time as r2 in (7.3.1). When compared to the case where energy

storage is not used r2 = ∞, settling time is more than cut in half when r2 =

0.5 and halved again when r2 = 0.01.
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Figure 7.7: The resulting states when r2 varies. (r2 = ∞ represents no ESS
control action)

7.5 Summary

An optimal closed-loop controller is designed for PSS to improve the

stability of a generator using both the reference field voltage and ESS power as

input controls. This controller minimizes the perturbations in rotor frequency

and angle in response to disturbances. The designed reduced order observer is

able to exactly estimate the unmeasurable state after 0.1 seconds. At 60 Hz

and with the same initial rotor speed disturbance of 0.12 Hz, the open loop-

system requires 63 seconds to settle, while the proposed controller reduces the

settling time to 5.3 seconds without the use of ESS and 0.92 second with the

ESS. At a lower operating frequency of 10 Hz, the open-loop system is unstable

while the closed-loop system is stable and has a settling time of 0.34 seconds.

With the proposed closed-loop controller the ESS requires less energy to be

effective at low frequencies. To damp out the same disturbance, the system

operating at 10 Hz only needs 3.83 kWh of energy, while 19.8 kWh is required

when the operating frequency is 60 Hz.
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Chapter 8

A Voltage Smoothing Algorithm using Energy

Storage PQ Control in PV-integrated Power

Grid

1 Changes in solar irradiance cause variations in photovoltaic (PV)

power generation and thus affect customer voltage. Load tap changers (LTC)

in substations are used to mitigate voltage variations, but they are relatively

slow and cannot regulate the voltage adequately. Furthermore, abrupt voltage

changes induced by PVs could greatly cause mechanical wear and reduce their

lifetime. This chapter develops a novel voltage smoothing control algorithm

for distributed energy storage (ES) systems to reduce the impact of PV gen-

eration on voltage quality. Different from other works, the proposed control

can improve the performance by having both active and reactive power con-

trol and monitoring voltage directly. The technique’s performance is verified

through simulation and modeling of the IEEE 4-bus test system. The pro-

posed technique can effectively smooth the voltage and reduce the number of

1P. Siratarnsophon, K. W. Lao, D. Rosewater and S. Santoso, “A Voltage Smoothing
Algorithm using Energy Storage PQ Control in PV-integrated Power Grid,” in IEEE Trans-
actions on Power Delivery. doi: 10.1109/TPWRD.2019.2892611
The dissertator, P. Siratarnsophon, and K. W. Lao were partners in performing this re-
search, which was developed out of a final class project. P. Siratarnsophon took lead on
writing and editing the article. The dissertator contributed substantially to the controller
algorithm development and provided technical review of the article. Surya Santoso provided
editorial guidance and multiple rounds of technical review.
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tap operations by approximately 50%.

Contributions of this chapter were identified as follows: (minor) de-

signed and demonstrated an advanced controller to smooth grid voltage using

energy storage in distribution systems with high penetration PV.

8.1 Introduction

Increasing photovoltaic (PV) integration and weather conditions could

vary PV active power injection and causes voltage fluctuations [194]. Load

tap changers (LTC) at transformer substations can mitigate voltage varia-

tions; however, LTC response is relatively slow and thus is not suitable for the

ramp rate and frequency of fluctuations induced by PV. The volt-var control

was proposed to regulate the voltage [195,196]. However, the control only used

reactive power to maintain the voltage and may not be effective on systems

with high PV penetration levels or with low reactance to resistance (X/R)

ratio. An algorithm was proposed for controlling the active power injection

from energy storage (ES) to counteract with PV inverter power output fluc-

tuations [194, 197, 198]. However, these control algorithm uses solely active

power and as a result only mitigates the voltage fluctuations induced by only

the monitored PV. Voltage fluctuations caused by other PV systems are not

considered.

Thus in this chapter, a novel control algorithm for ES power injection

is proposed to achieve voltage smoothing and voltage regulation. It uses both

active and reactive power to reduce (smooth out) changes in voltage over

time. In the proposed algorithm, instead of monitoring PV inverter power,

the PV bus voltage is monitored to mitigate voltage fluctuations caused by

other PV panels in the grid directly. However the nonlinearity between active,
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reactive power and voltage makes the approach challenging, and is overcome

by adding a special iterative control loop. The proposed voltage smoothing

control algorithm is described in Section II. Section III presents the system

model modified from IEEE 4-bus test system and simulation verifications.

Section IV concludes the chapter.

8.2 Voltage Smoothing Techniques by ES Power Injec-
tion Control

Two voltage smoothing strategies are presented below. The first is

based on an existing active power ramp rate control, while the second is our

proposed method of voltage control.

8.2.1 Technique I: Active power ramp rate control by monitoring
PV inverter power output

The first technique, designated as “Technique I”, monitors PV inverter

active power output to control active power ramp rate [197]. The control

algorithm is shown in Fig. 8.1 In Technique I, the PV inverter active power

output is monitored and recorded for computing average value. The difference

between the current PV inverter active power output and its average value is

used to determine the required active power injection to reduce active power

and voltage fluctuations. In addition, in order to avoid over-usage of the

ES and to lengthen ES lifecycle, a power set-point correction based on state

of charge (SOC) is included so that the ES will be ready for future voltage

smoothing operation. This correction factor is also used to adjust the trade-off

between smoothing performance and battery longevity. There are two major

deficiencies for this technique. First, fluctuations caused by other PV systems,
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Figure 8.1: Control algorithm of voltage smoothing by limiting active power
ramp rate in Technique I.

which don’t have ES smoothing, cannot be mitigated. Second, the effect of

other mitigation strategies, such as LTC action or reactive power control,

cannot be considered and hence the battery could be needlessly overworked.

Shown in Fig. 8.2 (a) is a diagram illustrating the range of the power

injection from the ES using Technique I. The ES power injection control point

would vary along the horizontal axis of PES only since no reactive power

control is concerned.

8.2.2 Technique II: Proposed algorithm of PQ power injection con-
trol by monitoring voltage

The second technique, designated as “Technique II”, is the proposed

active and reactive power injection control by monitoring local PV bus voltage

which the inverter is connected to. It combines both technique I and volt-

var control. Fig. 8.3 shows the proposed control algorithm. In order to

overcome the drawbacks in Technique I, two major modifications are proposed.

First, the voltage of local PV bus is monitored instead of PV inverter power
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(a) (b)

Figure 8.2: Power injection control point for ES in (a) Technique I; and (b)
Technique II.

Figure 8.3: Proposed control algorithm of ES PQ power injection by monitor-
ing local PV bus voltage in Technique II.
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output to take into consideration voltage fluctuations caused by changes in

load and the output of other PV generation without ES smoothing. Second,

because the control is based on voltage measurements and not active power,

instead of controlling ES active power alone, reactive power is also controlled to

reduce the costly active power required from the battery and provide additional

voltage support for the system. By doing so, effective voltage smoothing can

be achieved to reduce the number of LTC operations.

1) PES Control: For the active power PES control loop, PV bus volt-

age and ES SOC are monitored. The value of control update ∆PES is com-

puted from (1). Voltage fluctuations caused by other PV panels without ES

smoothing will be reflected in the parameter V and be controlled. Different

from Technique I, the relationship between active power PES and bus volt-

age V is nonlinear. Therefore, an iterative loop is introduced in the proposed

technique to determine the optimal power control operation point of PES. A

simulator/observer is used to simulate and observe the voltage resulting from

different PES/QES combinations, and is compared with the average value Vave

and the interative loop will continue until the absolute difference is within a

threshold value (Vth).

∆PES = −G1(SOCREF − SOC) +G2(Vave − V ) (8.2.1)

where SOCREF refers to the desired SOC reference level, and Vave is the aver-

age value of bus voltage calculated over a set time window.

2) QES Control: For the reactive power QES control loop, the PV bus

voltage V is monitored. The expression for determining the updated ∆QES

is shown in (2). Similarly, the value of bus voltage V is compared with its
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average value Vave to compute QES and the iterative loop continues until the

absolute difference is within a threshold value Vth.

∆QES = G4(Vave − V ) (8.2.2)

Fig. 8.2 (b) shows the power injection control point from ES in Tech-

nique II. Compared to Technique I, the control involves reactive power QES.

In order to reserve ES active power for future usage, the controller will it-

eratively search for the optimal power injection which requires the least real

power. The value of PES is first set to a certain value, and the value of QES

is gradually increased until the system reaches the optimal operation point.

In case if the operation point exceeds the power factor limit, the value of PES

will be increased by a certain proportion, and the iteration procedure contin-

ues by increasing reactive power QES. The iteration will stop when it reaches

the optimal operation point or the ES capacity limit.

8.3 System Model for Verifications

Verifications of the proposed voltage smoothing technique is done by

using the modified IEEE 4-bus test system shown in Fig. 8.4 Two scenarios

are investigated. In scenario 1, a PV system (with 50% penetration rate), and

an ES system (with initial SOC of 60 %) is installed at phase A of the load

bus (bus 4). In scenario 2, in order to simulate the case of voltage fluctuations

caused by other PV systems, a PV system (with 25% penetration rate) is

added at the transformer bus (bus 3). The unbalanced load for phase A, B

and C of the load bus (bus 4) is set to 1275 kW, 1800 kW, and 2375 kW, with

power factor of 0.85, 0.90 and 0.95 respectively.
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Figure 8.4: System model used for verification.

In both scenarios 1 and 2, the ES is set to have a power rating of 320

kW, and 640 kWh.

The line to neutral voltage of the load bus (bus 4) phase A and tap

position at load tap changer (LTC) during daytime (8 a.m. to 8 p.m.) ob-

tained through simulation is shown in Fig. 8.5 The condition without any

voltage smoothing control is selected as the base case for the study. The load

voltage profile is highly affected by PV power generation and the tap position

is changed rapidly to regulate the voltage. A total of 201 tap changes are

recorded in the simulated 24 hour period.

In Technique I, the value of G1=1.0 and G2=1.0. Compared to the

base case, the number of tap changes at LTC is reduced to 27. For reference,

the active and reactive power injection from ES and ES SOC status are shown

in Fig. 8.6 Using Technique I control, overuse of active power causes rapid

changes in the SOC and accelerated battery degradation.

In Technique II, the control accuracy is higher when the values of G2

and G4 are lower, but it also takes longer to search for the optimum point.
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Figure 8.5: (a) Line to neutral voltage at the load bus (bus 4 phase A); (b)
Tap number at load tap changer: (top) case without any voltage smoothing
control; (middle) using Technique I; (bottom) using Technique II

In the simulation, G1=1.0, G2=0.1, and G4=0.3. Compared to Technique

I, the voltage profile is more stationary, and the root mean square deviation

(RMSD) is reduced by 57%, while the number of tap changes is reduced to 13.

Fig. 8.6 shows the ES power injection and SOC status during verifications.

In scenario 2 these results are more pronounced. The voltage fluc-

tuations caused by the addition of unregulated PV increases the number of

tap-changes using Technique I to 35 while Technique II is unaffected. The

verification results for both scenarios are summarized in Table. 8.1 With pro-

posed Technique II, the number of tap changes and RMSD is greatly reduced

by around 50% and 58% respectively, while reducing the active power required

from the ES thereby prolonging the battery life.
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Figure 8.6: (a) Injection of active and reactive power from ES; (b) Battery
SOC: (top) Technique I; (bottom) Technique II

Table 8.1: Summary of Verification Results
Scenario 1

Control Tap Changes Pmax Qmax SOCmax SOCmin RMSD
No Control 201 0 0 0 60 0.101 kV
Tech. I 27 320 0 320 39.58 0.068 kV
Tech. II 13 197 193 274 44.68 0.029 kV

Scenario 2
Control Tap Changes Pmax Qmax SOCmax SOCmin RMSD
No Control 245 0 0 0 60 0.121 kV
Tech. I 35 320 0 320 39.58 0.074 kV
Tech. II 13 231 219 319 43.69 0.031 kV
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8.4 Summary

A control algorithm to mitigate the impact of PV on grid voltage and

LTC action is presented. Different from others, the proposed control smooths

voltage directly and uses both active and reactive power control loops to im-

prove battery life and mitigate voltage fluctuations caused by other PV panels

in the system. Verified through simulations on IEEE 4-bus test system, less

battery energy is used and the number of LTC tap operations are reduced by

around 50%, which is lower than the alternative control. The proposed control

method is expected to be more effective in providing voltage regulation over

wider range of X/R ratio compared to controlling active or reactive power

alone.
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Chapter 9

Optimal Control of a Battery Energy Storage

System with a Charge-Temperature-Health

Model

1 Battery energy storage is being installed behind-the-meter to reduce

electrical bills while improving power system efficiency and resiliency. This

chapter demonstrates the development and application of an advanced optimal

control method for battery energy storage systems to maximize these benefits.

We combine methods for accurately modeling the state-of-charge, tempera-

ture, and state-of-health of lithium-ion battery cells into a model predictive

controller to optimally schedule charge/discharge, air-conditioning, and forced

air convection power to shift a electric customer’s consumption and hence re-

duce their electric bill. While linear state-of-health models produce linear re-

lationships between battery usage and degradation, a non-linear, stress-factor

model accounts for the compounding improvements in lifetime that can be

achieved by reducing several stress factors at once. Applying this controller to

1D. Rosewater, A. Headley, F. Mier, and S. Santoso, “Optimal Control of a Battery
Energy Storage System with a Charge-Temperature-Health Model” in Proc. 2019 IEEE
Power & Energy Society General Meeting, August 2019
The dissertator was the principle investigator for this research including model development,
simulation and performance analysis, and writing/editing the article itself. Alex Headley
contributed to the control algorithm development. Frank Austin Mier experimentally calcu-
lated the thermal model parameters for an 18650 cell in cross flow. Surya Santoso provided
editorial guidance and multiple rounds of technical review.
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a simulated system shows significant benefits from cooling-in-the-loop control

and that relatively small sacrifices in bill reduction performance can yield large

increases in battery life. This trade-off function is highly dependent on the

battery’s degradation mechanisms and what model is used to represent them.

Contributions of this chapter were identified as follows: (minor) de-

signed and demonstrated an advanced control system to optimally reduce a

customer’s electrical bill using a battery energy storage system, subject to a

minimum operational life constraint.

9.1 Introduction

Time-of-use, demand charge, and other electrical tariff structures are

established by utilities to reduce load factor within an area and defer expen-

sive infrastructure upgrades. These tariffs incentivize customers to use energy

during off-peak times and hence can mutually benefit both the utility and the

customer. Behind-the-meter energy storage systems can reduce the electrical

bill for customers within these areas by shifting load away from when it is

expensive.

Designing controllers to schedule a battery energy storage system (BESS)

for this and other applications has been a growing field of research [22]. In this

chapter we develop a controller for a battery energy storage system (BESS)

that optimally shifts a customer’s electrical useage and hence reduces their

electric bill, while being constrained by a desired operational lifetime. This

is a particularly difficult problem as accurate state-of-health (SoH) models

depend on accurate temperature and state-of-charge (SoC) models. Previous

work has used reduced order models that abstract many of the underlying

degradation mechanisms [59,64,84]. Others use a detailed SoH model but as-

237



sume a constant temperature [131]. We utilize an empirical stress-factor based

degradation model that accounts for time, SoC, temperature, and depth-of-

discharge (DoD). To model temperature, we use a radial volumetric finite

element model for a representative cell, coupled with a simplified model for

air flow and temperature within the enclosure, to estimate the cell-core tem-

perature driving degradation. To model SoC, we use a charge-based reservoir

model which accounts for battery voltage and current.

The proposed controller includes a novel combination of models for

SoC, Temperature, and SoH, each of which have been designed to balance ac-

curacy and computational simplicity. These models incorporate factors that

can cause degradation in complex ways and have previously not been con-

sidered together in controller design. The proposed controller can be utilized

by BESS owner/operators to extend the operational lifetime of their assets

and/or by BESS manufactures to reduce the risk in providing a warranty.

The remainder of this chapter, Section 9.2 formally establishes the

controllers objectives and operational constraints, Section 9.3 develops the

Charge-Temperature-Health BESS model used by the proposed controller, Sec-

tion 9.4 then discusses the simulation results and the trade-off between con-

troller performance and operational life, Section 9.5 summarizes the research

and discusses the broader implications of the controller’s design.

9.2 Problem Statement

We consider a hypothetical commercial electrical customer billed for

both daily time-of-use (TOU) energy and monthly peak-demand charges. This

customer decides to purchase and install a battery to reduce their electricity

bill. The energy contract the customer has charges 9¢ / kWh during off-peak,
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11¢ / kWh during partial-peak hours, and 15¢ during peak [10] according to

the schedule in Fig.9.1 (top). The utility then charges $50 / kW service fee

according to the peak net load measured during the billing period [31]. The

load data used for this problem, as shown in Fig. 9.1 (bottom), are adapted

from the EPRI test circuit ‘Ckt5’ loadshape, normalized to a 1MW peak [4].

We will assume that the load and price are known a priori and that the control

horizon shown is known to be the peak-load day in the billing period. Without

the battery, the total bill is calculated according to (9.2.1). For this problem

we assume that the net-load is always greater than zero. The total baseline

electrical bill for this day is $52,080 ($50,000 demand, $2,080 energy).

c′l + $50 max(l) (9.2.1)

where l is the n length vector of load (kW), c is the n length vector of TOU

energy prices ($/kWh), and •′ denotes a vector’s transpose. We use a time-

step ∆t = 15 minutes (0.25 hours), and n = 96 (1 day). With the addition of

a BESS that can supply (-), or absorb (+), power pe, the customers cost can

be modified to (9.2.2).

c′(l + pe + pAC + pfan) + $50 max(l + pe + pAC + pfan) (9.2.2)

where pe is the battery system power that element wise subtracts from l when

the battery system is discharging, pAC is the air-conditioning (AC) power,

and pfan is the cooling fan power. The problem is thus formulated: design a

controller to optimally calculate a vector of battery system power pe, AC power

pAC, and fan power pfan that minimizes the customer’s cost without exceeding

the battery’s limits. Among these limits, the controller must restrict operation

such that the battery’s lifetime will meet or exceed a chosen operational life

(5, 10, 15, or 20 years). Note that the solution to this narrow control problem

can easily be adapted to fit many different tariff structures.
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Figure 9.1: Time-of-use price schedule (top), and customer electrical load
(bottom) [4]

9.3 BESS Model

This section outlines the set of differential equations and constraints

that define a BESS model. This model is used for model-predictive-controller

(MPC) to solve the control problem established in Section 9.2. The following
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constraints define the feasible range of each decision variable.

pmin ≤ pe ≤ pmax (9.3.1a)

0 ≤ pAC ≤ pAC-max (9.3.1b)

0 ≤ pfan ≤ pfan-max (9.3.1c)

ςmin ≤ ς ≤ ςmax (9.3.1d)

vmin ≤ vbat ≤ vmax (9.3.1e)

imin ≤ ibat ≤ imax (9.3.1f)

Tmin ≤T ≤ Tmax (9.3.1g)

%̇min ≤ %̇ (9.3.1h)

where pe is the BESS ac power (kW) (+ charge, - discharge), ς is the SoC

(%), vbat is the battery voltage (V), T is the battery’s core temperature (K),

and %̇ is the rate of degradation (% per hour). The limits pmin, pmax, vmin,

vmax, imin, imax, Tmin, Tmax are box constraints on power, voltage, current, and

temperature respectively. As the rate of change of SoH is always negative, %̇min

the limit on the rate of degradation is also negative.

The relationships between decision variables are defined by differential

equations. We build these relationships up in three general categories (SoC,

Temperature, and SoH) each of which is covered in one of the following sec-

tions. It should be noted that BESS manufacturers may view these model

parameters as proprietary while an owner/operator may view the load profile

or tariff structure as similarly protected information. As the controller re-

quires both, it may not be feasible in all circumstances for these non-technical

reasons.
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9.3.1 Charge Model

Charge reservoir model (CRM) is an umbrella term for the class of SoC

models that define capacity in units of charge (Ah) [15]. The set of differential

equations that make up the CRM used here is shown in (9.3.2). We have

selected these permutations of the available models for open-circuit-voltage

(VOC) and SoC to balance accuracy and simplicity.

pdc = φ2p
2
e + φ1pe + φ0 (9.3.2a)

pdc = ibatvbat (9.3.2b)

vbat = voc +R ibat (9.3.2c)

voc = ας3 + βς2 + γς + δ (9.3.2d)

Ccapς̇ = min(ibat, 0) + ηc max(ibat, 0) (9.3.2e)

where φ2 , φ1, and φ0 are the coefficients of a quadratic efficiency function

for the inverter, pdc is the dc power, ibat is the dc current, R is the Thevenin

source resistance of the battery equivalent circuit, voc is the battery open-

circuit-voltage, α, β, γ, and δ are the coefficients for a cubic polynomial fit for

open-circuit-voltage, Ccap is the charge capacity, ηc is the coulombic efficiency,

and •̇ represents the derivative with respect to time.

9.3.2 Temperature Model

The temperature of the battery is a function of the rate of heat gen-

erated by the battery during operation and the rate of heat lost to its envi-

ronment. Further, within a cell, temperature can differ significantly from the

surface to the core. Fig. 9.2 shows the model used here to estimate internal
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Figure 9.2: Representitive-cell model with internal temperature

temperatures for use in the degradation models. The set of differential equa-

tions that make up the temperature model used here is shown in (9.3.3). In

this model we include heat generated only from joule (resistive) heating as

in [105]. Note that we use thermal transmittance (U) instead of it’s recipro-

cal value, thermal resistance, to simplify notation. Also, we choose five cell

volumes, (9.3.3a)-(9.3.3e), each with heat generation and conduction, and a

surface volume (9.3.3f), with heat conduction in and convection out, to re-

solve the internal temperature gradient. The number of internal volumes is to

balance model accuracy with simplicity.
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(Ci V1) Ṫ1 =V1R(ibat)
2 + U1(T2 − T1) (9.3.3a)

(Ci V2) Ṫ2 =V2R(ibat)
2 + U1(T1 − T2) + U2(T3 − T2) (9.3.3b)

(Ci V3) Ṫ3 =V3R(ibat)
2 + U2(T2 − T3) + U3(T4 − T3) (9.3.3c)

(Ci V4) Ṫ4 =V4R(ibat)
2 + U3(T3 − T4) + U4(T5 − T4) (9.3.3d)

(Ci V5) Ṫ5 =V5R(ibat)
2 + U4(T4 − T5) + U5(Ts − T5) (9.3.3e)

CsṪs =U5(T5 − Ts) + Us(u∞) (TEN − Ts) (9.3.3f)

CEN ṪEN =N Us(u∞) (Ts − TEN) + Uenv(Tenv − TEN)

+ UEX (TEX − TEN) (9.3.3g)

CEX ṪEX =UEX (TEN − TEX)− ηACpAC (9.3.3h)

u∞ =ηfanpfan (9.3.3i)

Us(u∞) =af u
4
∞ + bf u

3
∞ + cf u

2
∞ + df u∞ + ef (9.3.3j)

where T1−5 are the temperatures of each internal battery element starting

with the core through just below the surface (K), Ts is the battery surface

temperature (K), TEN is the air temperature in the enclosure (K), Tenv is the

environmental temperature (K), Ci is the battery’s internal volume-fraction-

specific heat capacity (J K−1 %−1), V1−5 are the volumetric fractions for each

radial element, Cs is the battery’s surface total heat capacity (J K−1), U1−5

are the battery’s thermal transmittances between each internal element (W

K−1), Us(u∞) is the polynomial fit for the thermal transmittance from the

surface of the battery to the air in the enclosure which is a function of u∞

the air velocity (m s−1), ηfan is the fan’s efficiency (m s−1 kW−1), UEX is the

thermal transmittance from the AC heat exchanger to the air in the enclosure,

ηAC is the AC unit’s coefficient of performance, af, bf, cf, df, and ef are the forth
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order polynomial fit for the convective thermal transmittance. The function

and parameter values for the thermal transmittance (Us(u∞)) is a polynomial

fit of a piecewise function of the Reynolds number, fluid density, dynamic

viscosity, and several empirically derived parameters, all of which are found

in [2].

9.3.3 Health Model

It is common to represent degradation based on an exponential decay

function of calendar and cycle degradation [128], as shown in (9.3.4). This

decay is driven by a degradation function (fd) based on a combination of

calendar life stress factors, and cycle life stress factors. The summation in

(9.3.4b) represents a rainflow cycle counting algorithm which is widely used

for accurate cycle-life modeling [129].

% =e−fd (9.3.4a)

fd =St Sς ST +
N∑
i=1

wiSδ Sς ST (9.3.4b)

where % is the SoH, fd is the degradation function, St is the time stress factor,

Sς is the SoC stress factor, ST is the temperature stress factor, Sδ is the DoD

stress factor, and wi indicates a full or partial cycle.

While the rainflow cycle counting algorithm is highly accurate, it is

also recursive and hence difficult to express in an optimization problem [131].

Because we know that the solution will have one cycle in the one-day control

horizon, we can simplify the rainflow algorithm by removing the summation.

This method has limited applicability as it would not be accurate for two days,

or a day with a double peak. Hence, the set of differential equations that make

up the degradation model used here is shown in (9.3.5).
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%̇ =− ζ kt Sς ST e−fd (9.3.5a)

fd =St Sς ST + Sδ Sς ST (9.3.5b)

St =kt t (9.3.5c)

Sς =ekς(ς−ςref ) (9.3.5d)

ST =ekT (T−Tref )
Tref
T (9.3.5e)

Sδ =aDoD δ
4 + bDoD δ

3 + cDoD δ
2 + dDoD δ + eDoD (9.3.5f)

where t is time, δ is DoD, and ζ is a scaling factor we use to modify the life of

the simulated battery cells. The parameters kt, kς , kT , aDoD, bDoD, cDoD, dDoD,

and eDoD enable their associated stress factors to be tuned to specific batteries.

The limit on the degradation rate that specify a minimum lifetime is shown

in (9.3.6).

%̇min = − %

Lop − L
(9.3.6)

where Lop is the total operational life expectation (e.g. 15 years) and L is the

current life (years that the BESS has been in service).

9.4 Results

We select model parameters to represent an 200kW/600kWh lithium-

manganese-oxide type BESS. The 800Ah battery is constructed from four par-

allel strings, each with 14 56-V racks in series, each with 14 modules in series,

where each module has 77 cells in parallel (as each cell is 2.6Ah). This battery

is enclosed in a standard 12.2m (40’) container. Table 9.2 shows the model

parameters used here. The cell electrical and thermal parameters are derived
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Table 9.1: Simulations Results

Operational
Life

Mean
SoC

Mean
Core
Temp.

Max
Core
Temp.

DoD
$ Sav-
ings

% Sav-
ings

5 years 55.79% 31.08◦C 45.00◦C 75.00% $3756.32 7.77%
10 years 42.50% 25.88◦C 42.27◦C 73.13% $3559.55 7.34%
15 years 35.72% 22.76◦C 32.57◦C 59.47% $2890.92 5.88%
20 years 28.24% 20.74◦C 24.23◦C 38.98% $1979.55 3.95%

from experimental analysis on cells and a small scale system, while the degra-

dation model parameters are taken from [128] (note that the DoD stress factor

was refit as a polynomial). We choose a degradation rate scaling factor (ζ)

of six to reprsent a low cycle life battery where the impact of the advanced

controller is most clear. Limits on voltage, current, and temperature are from

manufacturer specifications, and internal cell volumes and material thermal

transmittance properties are retrieved from [199]. The convection heat trans-

fer function is developed from [200]. This problem is formulated and solved

with the freely downloadable modeling language ‘pyomo’ [74,75] and non-linear

solver ‘ipopt’ [76].

Computation for each case takes roughly 15 seconds on a i7-7600U CPU

at 2.80 GHz. The net-load, and corresponding BESS power (pe) and SoC (ς)

trajectories for a range of selected operational life expectations are shown in

Fig. 9.3. The net-load includes the air-conditioner and fan power which are

optimized in conjunction with the charge/discharge power. As an illustrative

example of how the air-conditioner and fan are able to cool the battery cells,

Fig. 9.4 shows their power trajectories along with the temperature of the

representative cell. By modeling the distribution of temperature within the

battery, it is possible to plan AC/fan power outputs to limit thermal degra-

247



Table 9.2: Battery Energy Storage System Model Parameters I

Name Symbol Value
Total String Charge Capacity Ccap 800 Ah
Coulombic Efficiency ηc 94.6 %
Self-Discharge Current isd 0.50 A
Battery Internal Resistance R 55 mΩ
Maximum Power Charge pmax 200 kW
Maximum Power Discharge pmin -200 kW
Maximum SoC ςmax 95 %
Minimum SoC ςmin 20 %
Maximum Cell Voltage vmax 4.2 V
Minimum Cell Voltage vmin 3.3 V
Maximum Current Charge imax 4.0 A
Maximum Current Discharge imin -2.6 A
Number of Cells Total in BESS N 60,368
Battery Internal Heat Capacity Ci 67.08 J/◦C
Battery Surface Heat Capacity Co 2.45 J/◦C
Maximum Temperature Tmax 45 ◦C
Minimum Temperature Tmin 20 ◦C
Enclosure Thermal Transmittance Uenv 1 W/◦C
Enclosure Heat Capacity CEN 63 kJ/◦C
Max AC power pAC-max 30 kW
AC Coefficient of Performance ηAC 4
Max Fan power pfan-max 5 kW
Fan Efficiency ηfan 0.6 (m/s)/kW
Heat Exchanger Heat Capacity CEX 0.5 kJ/◦C
Heat Exchanger Thermal Transmit-
tance

UEX 9.18 W/◦C

Degradation Rate Scaling Factor ζ 6
Thermal Degradation Constant kT 0.0693
Time Degradation Constant kt 1.49e-6
SoC Degradation Constant kς 1.04
Reference SoC ςref 50 %
Reference Temperature Tref 25 ◦C

Note: these model parameters are meant to represent a hypothetical battery
system and do not necessarily reflect any specific equipment.
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Table 9.3: Battery Energy Storage System Model Parameters II

Inverter Effi-
ciency

φ0 φ1 φ2

Coefficients
-2.0503 e-
04

0.9953 -6.163

Open-Circuit-
Voltage

α β γ δ

0.2 ≤ ς ≤ 0.95 320.377 -368.742 201.004 669.282
Internal
Cell Volumes

(core)
Vol. 1

Vol. 2 Vol. 3 Vol. 4 Vol. 5

Volume Propor-
tion

4% 12% 20% 28% 36%

Surface Ther-
mal Transmit-
tance

af bf cf df ef

Us(u∞)
-1.286
e-05

6.086
e-04

-1.048 e-
02

1.050 e-01 9.426 e-02

Internal Ther-
mal Transmit-
tance

U1 U2 U3 U4 U5

U1−5 0.245 0.490 0.735 0.980 1.225
DoD Stress
Factor

aDoD bDoD cDoD dDoD eDoD

Polynomial 1.158 -1.366 0.664 0.107 0.012

Note: these model parameters are meant to represent a hypothetical battery
system and do not necessarily reflect any specific equipment.
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Figure 9.3: Optimal net-load (top), charge/discharge (middle), and SoC (bot-
tom) schedules for different operational life expectations

dation based on the battery core temperature.

The reason that small changes in the schedule result in large changes

in the operational life is because of the compounding effect of the stress fac-

tors. To show this, we will consider the transition from the schedule under a 5

year operational life to a 10 year operational life. This change yields a 12.91%

reduction in SoC stress factor, a 29.47% reduction in temperature stress fac-

tor, and a 5.29% reduction in the DoD stress factor. These in tern reduce

the degradation function (fd) by 41.83% which compounds with the SoC and

temperature stress factor to reduce the the degradation rate by half.
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Figure 9.4: Example AC power, fan power (top), cell, enclosure, and heat-
exchanger temperature (bottom) results for 10-year operational life expecta-
tion
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9.5 Summary

This chapter demonstrates the development and application of an ad-

vanced BESS controller. This controller optimally schedules the power draw

for charge/discharge, air-conditioning, and forced air circulation based on a

combined electrical, thermal, and degradation model of a lithium-ion battery

system. This controller is applied to an example BESS to maximally reduce

the bill for a simulated electric customer under TOU energy and peak-demand

charges, subject to a selected minimum operational life.

The developed controller can reduce the electric bill by 8%, if a 5-

year operational life is selected, to 4%, for 20-years. While the model was

constructed using reasonable parameters, these results may not represent the

optimal life/performance trade-off for any specific BESS. However, we can

conclude more generally that a large gain in life may be derived from a small

sacrifice in performance. This is a result of the compounding effects of stress-

factors on battery degradation. Further, we can conclude that coordinating

the air-conditioning and circulation systems with charge and discharge can be

advantageous to optimal control as these systems can play a significant role

in reducing cell core temperature and hence prolonging life. This controller

can be used by manufactures or owner/operators to improve the value and

operational life of BESS.
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