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Abstract- Battery storage systems (BSSs) have become 

increasingly popular for grid applications due to the growing need 

for flexibility and reserve in power systems with rapidly developed 

renewable generation. Successful assessment and deployment of a 

BSS require optimizing its operation, and thereby, maximizing the 

potential benefits. In existing studies on economic assessment and 

optimal scheduling of a BSS, modeling of charging/discharging 

operation and the corresponding impacts on state-of-charge 

(SOC) is over simplified, which could result in inaccurate 

assessment results and even infeasible operation schedules. This 

paper proposes a general model to capture varying SOC change 

rate as a nonlinear function of charging/discharging power and 

SOC level. An optimal control is developed for the BSS based on 

the proposed nonlinear model. The optimal control using a 

nonlinear model is compared with a representative linear 

optimization method using a simplified model through a real-

world energy storage evaluation project to show the significance 

of the proposed method. 
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NOMENCLATURE 

 Battery energy capacity. 

 Number of time periods in optimization time window.

 Power exchange between BSS and grid (measured at 

 the grid connection point) during time period k,

 which is positive when injecting power into grid,  

 i.e., using generator convention. 

 Rate-of-change of energy stored in the battery at the 

end of time period k, which is positive when the 

battery is discharged. 

Maximum power (i.e., measured at the grid connection 

point) that can be injected and withdrawn into/from 

grid, respectively. 

State-of-charge (SOC) change rate per 100 kW for 

charging and discharging, respectively. 

 Lower and upper bounds of SOC during time period 

k, respectively. 

 Battery SOC at the end of time period k. 

 Time step size. 

 Discharging and charging efficiency of the battery 

storage, respectively, including components such as 

conductor, power electronics, and battery. 

 Marginal round-trip efficiency as a function of SOC. 

 Energy price of time period k. 

 

I. INTRODUCTION 

Operation of the electric power sector requires flexibility 

to realize instantaneous balance between generation and 

constantly changing demand. Energy storage has been a 

candidate for meeting such a flexibility requirement for years. 

With the rapid growth of renewable energy, the inherent 

uncertainty and variability present difficulties and challenges to 

power system operators. Recent developments and advances in 

energy storage and power electronics technologies are making 

their application a viable solution for grid problems. As many 

countries place greater emphasis on renewable generation, 

energy storage is becoming increasingly important and holds 

substantial promise for transforming the electric power 

industry.  

Many studies have been devoted to optimization and 

evaluation of BSSs for various grid applications. Studies [1] 

and [2] are dedicated to various battery technologies and 

methods of assessing their economic viability and impacts on 

power systems. In 2007 [3], the authors evaluate the economic 

performance of NaS batteries for energy arbitrage and 

flywheels for regulation services, based on fixed utilization 

factors for NYISO and PJM systems. Reference [4] 

incorporates realistic CAISO regulation signals and battery 

responses to yield more granular results. In [5], the authors 

investigate the application of BSS to relive transmission line 

thermal constraints, and thereby, increase the transfer 

capability. Based on a case study, an economic analysis of 

benefits and costs is provided. Reference [6] presents a 

distributed algorithm to optimally coordinate energy storage 

with distributed generators. In [7], an evaluation framework 

and co-optimization are proposed to assess BSS economic 

performance considering multiple grid applications 

simultaneously, including energy arbitrage, balancing services, 

capacity value, distribution upgrade deferral, and outage 

mitigation. Reference [8] considers an application bundle, 

including energy and demand charge reduction. A 

programming-based method is developed for economic 

assessment and optimal sizing of behind-the-meter BSSs. In 

[9], the authors develop a peak-shaving control algorithm to 

determine battery charging and discharging operation, and then 

calculate the economic benefits in demand charge reduction. In 



[10], an analytical optimal sizing method is proposed based on 

objective quantitative analysis of costs and benefits for 

customer-side BSS, which could identify key factors that affect 

optimal sizing.  

These studies optimize the charging/discharging operation 

to best utilize the limited power and energy capacity of BSS 

and then assess the economic performance accordingly. 

Nevertheless, the methods that are used to determine the 

optimal BSS charging/discharging schedule are not capable of 

accurately modeling BSS operation. For example, most of these 

studies (e.g., [5] and [9]) simply use a constant round-trip 

efficiency (RTE) to capture BSS losses. However, the same 

RTE with different one-way charging/discharging efficiencies 

may yield different optimal operating schedules. More 

importantly, due to the inability to represent one-way 

efficiencies in optimization, one cannot accurately estimate the 

SOC during charging (or discharging), and therefore, could 

obtain an infeasible operating schedule. While the optimal 

control methods in some existing studies such as [7] are based 

on one-way efficiencies, they can handle constant efficiencies, 

but not varying efficiencies. In [11], energy storage is studied 

for energy and demand charge reduction using a circuit model 

that expresses battery terminal voltage and current as nonlinear 

functions of the SOC. The circuit model assumes constant 

internal voltage and requires significant efforts to identity 

battery rated energy rated capacity and model parameters. It 

may not be able to provide required accuracy and is difficult to 

implement in practice. Furthermore, it is not capable of 

modeling varying charging/discharging capabilities at different 

SOC levels. To overcome these limitations, this paper proposes 

a general BSS model that expresses the SOC change rate as a 

nonlinear function of charging/discharging power and SOC 

level. An optimal control method is then developed to utilize 

the nonlinear model to determine an optimal schedule of BSS 

operation and evaluate the corresponding benefits.  

The rest of this paper is organized as follows: Section II 

reviews a typical existing method using constant efficiencies to 

determine the optimal control of a BSS. In Section III, we first 

discuss the shortcomings and limitations of existing methods 

with constant efficiency models, and propose a nonlinear model 

that can more accurately capture the impacts of SOC and 

operating power on BSS operation. Then, we propose an 

innovative optimal control method that is capable of 

incorporating the proposed general nonlinear model for BSS 

scheduling and evaluation. In Section IV, the proposed and 

existing methods are used for energy arbitrage analysis in a 

real-world energy storage project as an example to show the 

significance of the proposed method. Finally, concluding 

remarks are offered in Section V. 

 

II. EXISTING METHODS WITH CONSTANT EFFICIENCY MODEL 

In this section, we review a representative method using a 

BSS model with constant efficiency to determine optimal 

battery control for economic assessment and operational 

scheduling. Because the amount of energy stored in a BSS is 

limited, the charging/discharging operations at different time 

periods are interdependent. For example, injecting more energy 

into the grid in one hour increases the benefits for that hour, but 

leaves less energy for future use, and therefore may reduce the 

overall economic benefits. Therefore, the optimal scheduling 

must be performed over multiple time periods. A BSS also has 

charging/discharging power capacity, for which different grid 

services may compete against each other. For example, 

increasing discharging power for energy arbitrage service 

decreases the battery’s ability to provide other services. 

Moreover, there are losses associated with a BSS 

charging/discharging operation, which must be modeled and 

considered in the optimal scheduling formulation in order to 

obtain a profitable and effective operating plan. 

 In the case of energy arbitrage, the objective function is 

the net benefits of battery charging/discharging for given 

hourly energy prices over a look-ahead time horizon, as 

expressed in (1) 

 

where  is the power exchange between BSS and the grid 

(measured at the grid connection point) during time period k, 

which is positive when injecting power into grid,   is the 

number of time periods in the optimization time window,  is 

the energy price of time period k, and is time step size. The 

charging/discharging power must be within the operating range 

considering both battery and energy conversion system power 

rating, 

 

Where  and  are the maximum charging and 

discharging power of the BSS, respectively. The rate of change 

of energy stored in BSS  is related to charging/discharging 

power at grid coupling point  using the charging/discharging 

efficiencies as 

 

where and are the discharging and charging efficiencies, 

respectively. The change in SOC can be calculated  

as 

 

where  is the rated energy capacity of the BSS. Finally, 



the dynamics of SOC can be expressed as 

 
where  is the SOC level of the BSS at the end of time period 

k, and expresses the change in SOC during time period k. 

The SOC level needs to be restricted to be between its lower 

and upper bounds as expressed in (6), either for safe operation 

of the BSS or to meet user specifications. 

 
With the objective function and various constraints, we are now 

ready to present the optimization problem formulation to 

determine the optimal charging/discharging operation for 

energy arbitrage application as follows.  

 
subject to constraints from (2) to (6). It has been shown in [7] 

and [8] that optimization tricks can be applied to convert 

optimization problem P1 to a standard linear programming 

problem, which is then solved to determine the optimal 

charging/discharging operation. 

 

III. PROPOSED OPTIMAL CONTROL METHOD WITH NONLINEAR 

MODEL 

This section first discusses the shortcomings and 

limitations of existing methods using constant efficiency and 

rated discharging/charging power. A general nonlinear model 

is then proposed to better represent varying 

charging/discharging power capabilities and efficiencies at 

different SOC and output power levels. Finally, an optimal 

control is developed to utilize the proposed general nonlinear 

battery models for optimal scheduling and economic 

assessment. The same energy arbitrage application presented in 

the previous section is again used as an example to better 

explain and compare the proposed method with the existing 

method.  

In the method presented in Section II, the change in SOC with 

different charging/discharging power is estimated  using 

battery-rated capacity and constant charging/discharging 

efficiencies. Such a method is subject to several disadvantages 

and limitations: 

• The energy that can be discharged or charged to the 

battery depends on discharging/charging power. 

Using a single rated value for different power 

operation cannot accurately model the capability of a 

BSS. 

• The feasible charging/discharging power also depends 

on the SOC. The BSS may not be able to operate at 

any value within for some SOC. 

• The overall one-way efficiencies of the BSS need to 

be estimated based on battery efficiency, inverter 

efficiency, power for auxiliaries, and other factors. 

The estimation of each of these components requires 

approximation and introduces error that can be 

compounded. 

• The charging/discharging efficiency also varies with a 

BSS operation, which cannot be accurately modeled 

using constant efficiencies. 

A general nonlinear model is proposed to address these 

limitations, as shown in (8) and (9), 

 
where p denotes the charging/discharging power from a BSS, 

denotes feasible set of p for an SOC level of s, and  

denotes SOC change rate, which is a function of p and s.  

Such a nonlinear model can be obtained by experimenting 

and operating a BSS under various conditions such as operating 

mode, power, SOC, and temperature. The entire process of 

constructing the nonlinear BSS model can be automated by 

programming experiment and using a script to process the 

recorded data. The SOC level is measured and recorded for 

different charging/discharging power outputs. With the outputs, 

we can easily determine the feasible operating power ( ) at 

different SOC (s), and determine change of SOC ( ) as a 

function of charging/discharging power (p) and SOC (s). As an 

example, a 1 MW/3.2 MWh vanadium redox BSS is evaluated 

for an array of charging/discharging power. The corresponding 

function in (9) is plotted in Fig. 1.  

 
Fig. 1. SOC change rate versus SOC level for different charging/ 

discharging power levels. 

As can be seen, the change in SOC rate varies with the 

SOC level. At the same SOC level, different charging and 

discharging power levels also affect the change in the SOC rate. 

In addition, one can identify the feasible operating power set at 

different SOC levels in (8). For example, when the 

BSS can be operated on all 7 charging/discharging power 

levels. When  the BSS cannot be discharged at 



800 kW, and Ps only contains the remaining 6 operating power 

levels.  

Based on the nonlinear model, optimal control of a BSS is 

developed as follows. 

For any time period k, with 1) the feasible operating power 

range for different  and 2) expression of  (analytical or 

as look-up tables), we can relate the change in SOC in each time 

period k to the operating power and SOC,  

 
Note that the constant efficiency model represented by 

constraints from (2) to (4) can also be converted to the same 

form as (10) and (11). Therefore, we can formulate a more 

simplified but general optimization problem as follows: 

 
subject to constraints (10), (11), (5), and (6). Such a method 

removes the need to estimate the rated energy capacity and 

discharging/charging efficiencies and improves the modeling 

accuracy related to how different charging/discharging 

operations affect the SOC. Note that both P1 and P2 are 

deterministic optimization and do not explicitly address the 

uncertainty associated with the prices. For operation 

scheduling, one can take the expected value of prices as input 

and the optimization maximizes the expected benefit. The 

receding horizon control helps to mitigate the impacts of price 

uncertainty on the optimal solution. 

Compared with P1, the formulation in P2 better models the 

BSS operation, but is more challenging to solve because it is 

generally a nonlinear and nonconvex optimization problem. 

The simplest solution strategy is the enumeration method, but 

this method is generally computationally prohibitive. For 

example, with a 24-hour look-ahead window and 15-minute 

time step size, there are 96 time periods the BSS operation 

needs to be explored. If we discretize the feasible SOC range at 

each period into 100 values, the number of possible 

charging/discharging operation combinations is 10,096. The 

charging/discharging power limits can eliminate some 

infeasible combinations. Nevertheless, this still leaves us with 

a possible solution space with extremely high dimensionality. 

The dynamic programming (DP) method has many advantages 

over the enumeration scheme. The most important one is the 

reduction in the dimensionality of the problem. With DP, 

infeasible combinations can be detected a priori, and 

information about previously investigated combinations can be 

used to eliminate inferior combinations. This will significantly 

improve efficiency. A DP algorithm is developed in [11] to 

minimize the customer electricity bill based on a circuit model. 

Herein, a DP algorithm is proposed solve the optimization in P2 

using the proposed nonlinear battery model to maximize the 

revenue from energy arbitrage. The scheduling problem is first 

divided into stages, and each stage k represents a scheduling 

period (e.g., 15 minutes). Each stage is divided into states 

. A state represents the SOC level and encompasses the 

information (including the state trajectory previous to current 

stage and the corresponding benefit) required to move from one 

state in a stage to another state in the next stage. At each stage 

k, 

1) all feasible operations are first explored. 

a) The feasible operating power at the grid coupling 

point is determined based on (10). 

b) The corresponding change of the SOC is calculated for 

different feasible power levels based on (11). 

c) The corresponding SOC is evaluated using (5) and 

checked against (6) to eliminate any infeasible 

operation. 

d) The corresponding cost/revenue is calculated for all 

feasible operating power levels based on the objective 

function in (12). 

2) the maximum arbitrage value in stage k with state J is then 

calculated as 

 

 
 

IV. CASE STUDY 

The Washington State Clean Energy Fund (CEF) focuses 

on deployment and demonstration of energy storage in an effort 

to explore its role in Washington State and to assess its value to 

Washington State’s utilities and citizens [12]. To maximize the 

value of the CEF, Pacific Northwest National Laboratory has 

worked with Washington State and three winning teams, 

including Avista Utilities, Snohomish PUD, and Puget Sound 

Energy, to demonstrate and assess a diverse scope of 

applications for energy storage, such as energy arbitrage, 

regulation and load following services, Volt/Var control, load-

shaping, outage mitigation, and deferment of distribution 

system upgrade. The evaluation framework together with these 

demonstration projects will inform and empower other utilities 

in Washington State and in the region, storage technology 

developers, and state regulators to prudently and confidently 

pursue the deployment of energy storage. In this paper, as an 

example, energy arbitrage assessment is performed for a 

UniEnergy Technologies battery system to show the 

significance of the proposed method. The battery system has 



been placed and tested at Turner substation in Pullman, 

Washington. The economic evaluation is performed for a BSS 

that contains two identical vanadium-flow battery assemblies 

with total combined ratings of 2 MW/6.4 MWh. While the BSS 

is capable of providing 6.4 MWh from fully charged to fully 

discharged, about 10.7 MWh is required to recharge the BSS, 

resulting in an average RTE equal to 0.6. The SOC change rate 

versus SOC with different charging/discharging levels for a 

single assembly (1 MW/3.2 MWh) is plotted in Fig. 1. The 

Mid-Columbia prices from 2011 to 2015 have been obtained 

from Powerdex [13] and used for arbitrage analysis in this 

work. 

The optimal charging/discharging operations are 

determined using 1) optimization P1 with constant efficiency 

and discharging/charging power capability (existing method), 

and 2) optimization P2 with the nonlinear model (proposed 

method). The corresponding annual benefits are plotted in Fig 

2. As can be seen, the two methods generate very different 

results. The estimated benefits using the proposed method are 

much higher than those of the existing method in all 5 years, 

and the difference is as much as 80% of the annual benefits 

from the existing method.  

 
To understand cause of the difference, the characteristics 

of a BSS are further explored. The SOC change rate per 100 kW 

versus the SOC for different charging/discharging power levels 

is plotted in Fig. 3. This can be understood as an indicator that 

is equivalent to charging/discharging efficiency; it also shows 

how much the SOC is reduced (or increased) to obtain 100 kW 

discharging (or charging) power for per unit time. It is 

interesting to see that for the MESA 2 BSS, charging (or 

discharging) at different power levels results in the same 

efficiency, which only varies with the SOC. When discharging, 

the operable power capability also varies with the SOC. The 

marginal RTE at a different SOC can be calculated as 

 
where s denotes SOC level, and are 

the SOC change rate per 100 kW as a function in SOC for 

charging and discharging, respectively. The marginal RTE is 

plotted in Fig. 4. 

 
As can be seen, as SOC increases from 20% to 100%, 

marginal RTE increases rapidly before 40%, reaches the 

maximum around 50%- 60%, and then decreases slightly. It is 

interesting to note that although cycling a BSS from full to 

empty and then to full results in an average RTE equal to 60%, 

a BSS can be operated with a better efficiency when the SOC 

is above 30%. Therefore, the optimization P1 using a constant 

RTE of 60% underestimates the efficiency of a BSS for many 

possible operations and leaves the BSS on standby for many 

time periods when arbitrage could be profitable.  

To better show this, the energy prices, 

charging/discharging operations, and SOC from both methods 

are plotted for two days, in 2015, in Fig. 5. 



 
 The hours at the beginning and end of the sample period 

correspond to very high and low prices, respectively. Both 

methods generate similar battery discharging and charging 

operation at the beginning and end of the sample period because 

the price difference is big enough compared with RTE and 

energy arbitrage using BSS is profitable. However, existing 

method P1 outputs some infeasible operation. For example, the 

BSS is discharged at 2 MW from 7 to 9 a.m. and the SOC 

decreases from 100% to 20%. In fact, the BSS can only be 

discharged at this full power output within a very limited SOC 

range. For the other hours, existing method P1 leaves the BSS 

in standby most of the time because, using a constant RTE of 

60%, the price difference is not big enough to recover 40% 

losses in energy arbitrage. On the other hand, the proposed 

method P2 with a nonlinear model is capable of accurately 

exploring the BSS operating space at different operating power 

and SOC levels, takes into account the varying losses, finds 

profitable operation, and operates the BSS at a higher efficiency 

region to maximize the benefits from energy arbitrage. 

 

V. CONCLUSION AND FUTURE WORK 

This paper presents a novel nonlinear battery model and 

optimal control method for evaluation and operational 

scheduling of BSS. Compared with existing methods, the 

proposed method can better capture varying 

charging/discharging efficiencies and charging/discharging 

power capabilities, and therefore can generate more realistic 

and optimal operation of a BSS for grid applications. The case 

study using a commercial BSS shows that failure to incorporate 

accurate nonlinear models in optimal scheduling could result in 

significant errors in assessment of economic benefits and an 

infeasible operation schedule. In future work, we plan to apply 

the proposed method with a nonlinear BSS model for other grid 

applications such as regulation service, distribution deferral, 

and demand charge reduction. 
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