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Abstract- An optimal dispatching algorithm for five different 

utility grid energy market applications was developed using 

mixed-integer- linear-programming. This study explores the value 

propositions of operating an energy storage system (ESS) under 

each application individually, as well as together, in stacked 

applications through simulations using market pricing data 

obtained from the California Independent System Operator. 

Three different ESSs were simulated at energy-to-power ratios 

(EtoP) of 2, 4, and 8. In all cases, operation under stacked 

applications provided the best value proposition, and the effects of 

EtoP are discussed in light of the current market conditions, as 

well as potential future market conditions. 

Keywords- energy storage systems, dispatching, optimization, 

mixed-integer linear programming, stacked applications, energy 

market. 

 

I. INTRODUCTION 

Energy storage systems (ESSs) are becoming crucial 

components in the modern utility grid as electricity sources 

shift from fossil fuel power plants to more sustainable but 

intermittent wind and solar resources. An ESS can provide 

many services to the grid, such as improving power quality, 

responding to short-term ramping needs, and matching the load 

with the demand [1], [2]. Techno-economic analysis on energy 

applications such as frequency regulation (FQ) [3], energy time 

shifting, and renewable integration [4] has revealed that cost 

and cycle life are among the most sensitive factors in designing 

an ESS for the grid. Battke et al. [5] estimated life cycle costs 

and their uncertainties for different battery technologies and 

found different technologies take the cost leaderships in 

specific applications, yet no single technology surpasses over 

other solutions by a significant margin. In addition to seeking 

better and more cost effective ESS solutions, it is also important 

to investigate better value propositions for grid integrated ESSs 

to achieve higher adoption [6]. Many studies have been 

conducted on the dispatching of distributed energy resources, 

solar plus storage systems, and virtual power plants [7]–[10] to 

improve ESS performances and economic returns. Atzeni et al. 

[7] developed an optimization scheme for energy storage, 

implementing non-cooperative game theory to preserve user 

privacy. Hoke et al. [11] developed a linear programming-(LP) 

based optimization scheme for economic dispatching of an ESS 

in a micro-grid. Nottrott et al. [12] investigated LP optimal 

dispatching of battery and PV system with load forecasting and 

local time of use (TOU) utility pricing. Soares et al. [13] 

proposed a particle swarm optimization to solve a distributed 

energy resource dispatching problem of large dimension. 

Dispatching optimization under multiple energy storage 

applications has also been discussed. For example, Pandvzic et 

al. [8] provided a case study of stacked energy storage 

applications by combining long-term bilateral contracts and 

market participation. Other works investigating the stacked-

benefits of ESS have been published [14]–[17]. Previous works 

mostly focused on the co-optimization of two applications, with 

one emphasizing on power and the other on energy [15], [16]. 

In addition, previous works often identified one application as 

the primary service and treated others as secondary applications 

in the optimization process [14]. Our work took a market-

oriented approach and investigated suitable energy applications 

at a broader spectrum by considering energy storage service 

products across retail and wholesale market sectors, with three 

different pricing tariffs (i.e., retail TOU tariff, wholesale day-

ahead (DA) price, real-time-pre-dispatch price) and five 

distinctive application products. 

 

By combining multiple energy storage applications, 

different aspects of an ESS’s capabilities, including power, 

energy and fast response, capacities can be better exercised. By 

incorporating the product design and pricing data of each 

application from California independent system operator 

(CAISO) and local utility - San Diego Gas & Electric, the 

developed dispatching algorithm will provide real-world 

guidance for energy-management controller design and help 

evaluate the benefits of energy storage assets deployed on the 

grid. 

 



II. ENERGY STORAGE APPLICATIONS 

As illustrated in Fig. 1, an ESS was simulated to perform 

five different energy storage applications (e.g., Demand Charge 

Management (DC), Energy Time Shifting in the DA market, 

Energy Time Shifting in the Real-time market (RT), Flexible 

Ramping (FR), and FQ. The five applications cover both the 

behind-meter retail market and the front-of-meter wholesale 

market. They cover both lower uncertainty, steadier return 

services like bulk energy management, and higher uncertainty, 

greater return services like power quality regulation. It should 

be noted that the behind-meter and front-of-meter applications 

don’t typically apply to the same ESS because the battery sizes 

are significantly different and the price is settled from different 

meters. For the benefit of investigating the performance of 

stacked applications, the constraint is lifted in this work.  

Fig. 1. Five energy storage applications under both retail and whole 

sale markets; from top to bottom: Demand Charge Management (Blue), Day-

ahead Energy Time Shifting (Red), Real-time Energy Time 
Shifting(Green), Flexible Ramping (Purple), and Frequency Regulation 

(Orange). 

 

The DC is an energy service designed for commercial and 

industrial businesses. The cost of power demand in a billing 

cycle could be significant because short but large peak load 

drives up the “demand charge.” After implementing an ESS, 

the demand charge can be reduced by charging an ESS during 

off-peak usage and discharging during peak usage. If a business 

is under the TOU tariff, meaning the energy price is different 

between peak and off-peak hours, the same ESS can also 

perform energy peak shaving. In this study, a simulated school 

campus load profile was utilized for the DC application. The 

average load is 344 kW with a 944 kW peak. During the 

summer months, from July to September, when school is out of 

session, the campus will have lower average load demand.  

The Energy Time Shifting application captures the price 

fluctuation in the market throughout a day, and charges an ESS 

during off-peak price and discharges during peak price. The DA 

and RT applications are energy time shifting applications, but 

implemented in two different market segments. In the DA 

market, an ESS will submit their bid in the previous day before 

10 a.m. The DA market prices are usually more predictable, but 

the returns are relatively low. In the RT market, an ESS will 

submit their bid 75 minutes ahead of the clearing interval. The 

RT price is more difficult to predict, but offers higher potential 

returns. It fluctuates more, but the returns can be higher.  

 

The FR products for real-time pre-dispatch and real time 

dispatch markets were developed in a stakeholder process at 

CAISO [18]. With the proliferation of renewable resources, the 

electricity grid has begun to observe a lack of sufficient 

ramping capability and flexibility. Insufficient ramping 

capacity on the grid will have to be resolved out of the feasible 

system-wide schedule or rely on ancillary services and 

regulation, which will increase the probability of power balance 

violation. As a result, many utility grids have started 

considering FR products.  

 

The FQ is procured by CAISO to obtain regulation 

capacity each hour, based on the total system-wide demand for 

power. It is assumed that the system-wide FQ capacity demand 

is orders of magnitude higher than any single ESS. For that 

reason, if it is desirable to enter the FQ application, the 

simulated ESS can procure as much capacity as the ESS allows. 

The mileage component of the FQ product was created because 

of a Federal Energy Regulatory Commission order to introduce 

pay-for-performance measures for regulation products on the 

grid [19]. The mileage is a way to reward devices that can 

fluctuate and match load profiles more accurately. It is defined 

as the sum of the absolute values of the regulation control signal 

movements. 

III. OPTIMIZATION ALGORITHM 

A mixed-integer linear programming algorithm was 

implemented to develop the optimization solver. The algorithm 

dispatches the energy storage resources among the applications 

by maximizing the revenue (minimizing the cost) from stacked 

applications: 

 

where  is the cost function. are 

composed matrices to form the inequality and equality 

constraints. By committing the resources to different 

applications, the ESS can earn a collective of revenues 



described in the following equation: 

 

For each application, there are two types of revenues: the 

energy revenue, with subscript  is from the price 

differences between buying and selling energy; the application 

revenue, with subscript  is based on the specific 

service that an ESS performs.  is the application index:  

refers to DC, DA, RT, FR, FQ applications, 

respectively. i is the time index. For this optimization task, each 

time step has an interval of 15 minutes and an optimization 

horizon of 24 hours, which gives N = 96. P are continuous 

variables representing the ESS charging and discharging. In 

each time interval, there could be either charging (with 

superscript +) or discharging (with superscript −) actions, their 

differences are the actual ESS power (with superscript ‛o’). The 

ESS power output is confined by the power constraints: 

 

where and  are power limits for ESS charging 

and discharging, respectively. And collectively, the ESS’s 

state-of-charge must be limited within the energy constraints: 

 

The time interval Δt is 15 minutes in this study.  is 

battery round trip efficiency. Q is battery capacity. The 

is the initial state-of-charge. The 

are the upper and lower SoC limits, 

respectively. For FQ application, the reserved power capacity 

 were used instead of the actual clearing 

power. Five applications were considered for stacking. Based 

on the product design of each application, additional constraints 

and revenue models were implemented. 

The DC application is the only behind-meter application 

among the five. Because an ESS needs to be scaled to match 

the simulated commercial and industrial load data, the power 

limits for DC application were set to be 100kW  Also, because 

the metering is separate from the 

other applications, the DC application can only purchase 

energy at the local TOU price. One way to apply this restriction 

is to enforce the daily net SoC change to be zero: 

 

where in hh : 

mm are the start time and stop time. The DC energy revenue 

(cost) is based on grid consumption reduction: 

  

where is the TOU pricing. The application 

revenue is based on the cost reduction from demand charge: 

 

where is the demand charge cost per in 

is the load consumption. Because the demand charge 

cost settles monthly, which is a longer optimization horizon 

compared to the rest of the applications. A simplified approach 

was implemented to estimate a peak load  for each 

month, and penalizes the cost function whenever the grid load 

exceeds the   . The cost function in (11) is now 

simplified for optimization with shorter interval: 

 

The Energy Time Shifting applications in the DA market 

and the RT obtain the energy revenue through buying and 

selling in the respected markets: 

 



where the DA market has a bidding interval of 1 

hour and the bidding must be submitted 1 day ahead before 

10 a.m. to enter the market. The RT utilizes the real-

time pre-dispatching price that has a bidding interval of 15 

minutes, and the bidding must be submitted 75 minutes ahead 

to enter the market. Both markets are location specific. In this 

study, the local marginal pricing data from the La Jolla node 

(LAJOLLA_6_N007) from CAISO were utilized. The 

dispatcher is also applicable to other locations if the local 

marginal price of that node is given. 

The FR application energy revenue utilizes the same 

pricing data as the RT: 

 

The application revenue of FR comes from ramping 

up/down service. Based on the product design, resources will 

submit FR bidding according to the ramping requirement for 

the next bidding interval and get paid by the clearing price of 

the accepted bidding. For simulation purposes, the algorithm 

utilized the ramping up/down shadow prices from CAISO as 

the ramping clearing prices and assumed that the ESS always 

won the bid: 

 

where and are the FR down 

and ramping up shadow prices. and are the ramping 

down and ramping up movements performed in each bidding 

interval. 

The FQ’s application revenue is generated from two types 

of payments: capacity and mileage. The capacity payment 

comes from the amount of power capacity reserved for FQ 

application to dispatch, represented by  The mileage payment 

comes from the actual mileage dispatched by the 

system coordinator. The typical FR control signal has a time 

interval of 4 s. Given 1 h as an application time interval for FQ, 

the mileage of a FQ resource output is calculated within the 

interval, indicated in the following equation as AGC time step 

j, which should not be confused with the higher-level 

optimization time step i: 

 

Given that the mileage data M is available from CAISO 

market, we can back calculate  based on average 

power . As a result, the revenue function of FQ application 

can be represented as: 

 

where calculates the reserved regulation up/down 

capacity. and are capacity payment price and mileage 

payment price respectively. The FQ application’s energy 

revenue utilizes the same pricing data as the DA market. 

 

The market data from Jan. 1st to Dec. 31st of 2016 were 

scraped from the CAISO web API for DA, RT, FR, FQ 

applications and TOU tariff and demand charge pricing 

information from San Diego Gas & Electric was utilized for DC 

application. Since the FR application is under development, the 

shadow prices for ramping up/ramping down revenue was used 

instead. A set of forecasted pricing data was generated, by 

applying time delay and moving average to the true data. For 

the day ahead market, the signal was estimated using data from 

2 days ahead. 

 

For the RT, the signal was estimated using data from one 

day ahead. 

 

IV. RESULTS AND DISCUSSION 

An ESS model of 1 MW/2 MWh was used 

. The round trip efficiency 

is assumed to be 90%. Fig. 2 shows the 7 days of ESS 

dispatching power profiles among all five applications. The 

color coded bars (blue: DC, Red: DA, Green: RT Purple: FR 



Orange: FQ) indicate whether applications are charging 

(positive) or discharging (negative) in each time interval.  

 

Fig. 2. Dispatching duty cycles of each energy service under stacked 

applications; from top to bottom: Demand Charge Management (blue), Day-

ahead Energy Time Shifting (red), Real-time Energy Time Shifting (green), 

Flexible Ramping (purple), and Frequency Regulation (orange). 

The dispatcher was able to operate the ESS system based 

on economic incentives of different applications. The DC 

application mainly reduces the peak load demand. When peak 

load is not present, it will also dispatch the ESS to perform peak 

shaving based on the TOU price. The DC application only 

activates for a short period of time each day. The DA and RT 

application need to move bulk energy in and out of the ESS, 

and as a result, they are mutually exclusive and occupy most of 

the ESS time. For the FR application, when the ramping 

demand occurs, the ESS will capture it by reserving ramping 

up or ramping down capacity for the next interval and 

performing the ramping to earn extra revenue. The FQ 

application mainly dispatches the ESS’s power capacity. It is 

compatible with the rest of the energy-focused applications and 

stays active throughout the course of the simulation. As shown 

in Fig. 3, for stacked and single use applications, their power 

profile and energy throughput are largely similar. Under 

stacked applications, a 1 MW/2 MWh ESS will dispatch about 

2 cycles per day and earn average revenue of $398 each day, 

over 100% more compared to only participating in the RT 

application, at the similar cost of ESS usage. Further simulation 

was conducted of three ESSs of the same peak power (1 MW) 

and round trip efficiency (90%) but at different EtoP of 2, 4, 

and 8 respectively.  

 

Fig. 3. Comparison between the stacked application and single real-time energy 

shifting application; from top to bottom: Dispatching power profile, Energy 

throughout, and Revenue breakdown. 

As shown in Fig. 4, the black marks indicate the stacked 

daily revenues and the gray marks indicate the stacked daily 

revenues, excluding FQ. For long duration ESSs, they earn a 

higher portion of bulk energy management applications 

revenue from the total revenue mix. For short duration ESSs, 

they earn a higher portion of power applications revenue from 

the total revenue mix. However, under the current market, the 

revenue from FQ application are more profitable than the rest 

of the applications. As a result, extending the ESS duration 

from 2 hours to 8 hours only improves revenue by 30%. 

However, as the market progresses, the regulation market 

capacity will soon be filled; if excluding revenue from the FQ 

application, extending the ESS duration from 2 hours to 8 hours 

will improve its revenue by over 72%. It should be noted that 

because the FR application is still under development, the 

economic benefit of performing FR service is still possibly 



underestimated. 

 

Fig. 4 Comparison among the revenues of three Energy Storage Systems with 

different durations of 1-hour, 2-hour and 3-hour. Colored bars: revenue 

breakdown of the applications. Black mark: stacked revenue. Gray mark: 

stacked revenue, excluding the frequency regulation application. 

V. CONCLUSIONS 

This work developed an optimal dispatching algorithm 

using mixed-integer-linear-programming to operate an ESS 

under five different utility grid energy market applications. The 

study shows that operation under stacked applications provides 

better value proposition compared to single use application. 

Further simulation unveils system performances under various 

energy to power ratios representing different types of ESS 

solutions.  

To improve the dispatching algorithm, further work can be 

performed on acquiring more application data to develop a 

better market forecasting model using machine learning 

techniques. In addition, for applications like RT energy 

shifting, FQ, and flexible ramping, stochastic models can be 

constructed to account for uncertainties in the market 

participation process and help design a dispatcher weighing 

expected earnings and earning covariances. 
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